
Chapter 10
Damage Detection Using Large-Scale Covariance Matrix

Luciana Balsamo, Raimondo Betti, and Homayoon Beigi

Abstract Statistical pattern recognition based structural damage detection is often developed exploiting the methods of
outlier analysis. In this context, damage occurrence is assessed by analyzing whether a set of features extracted from the
response of the system under unknown conditions departs from the population of features extracted from the response of the
healthy system. The metric dominantly used for this purpose is the Mahalanobis Squared Distance (MSD). Evaluation of
MSD of a point from a population requires the use of the inverse of the population’s covariance matrix. It is known that when
the feature dimensions are comparable or larger than the number of observations, the covariance matrix is ill-conditioned and
numerically problematic to invert in the former case, while singular and not even invertible in the latter. To overcome this
difficulty, three alternatives to the canonical damage detection procedure are investigated: data compression through Discrete
Cosine Transform, use of pseudo-inverse of the covariance matrix, and use of shrinkage estimate of the covariance matrix.
The performance of the three methods is compared using the experimental data recorded on a four story steel frame excited
at the base by means of the shaking table available at the Carleton Laboratory at Columbia University.

Keywords Damage detection • Large-scale covariance matrix • Discrete cosine transform • Pseudo inverse • Shrinkage
covariance matrix

10.1 Introduction

Statistical pattern recognition based structural damage detection is the task of assessing damage occurrence using information
extracted from the structural response. It is developed by first learning the patterns drawn by such information when extracted
from the system under healthy conditions, and by then comparing the learnt patterns with the patterns drawn by the same
information extracted from the response of the system under unknown conditions: if the new patterns depart from the learnt
ones more than a prescribed threshold, the structure is declared damaged. The information extracted from the structural
response are known as damage sensitive features (dsf). Damage sensitive features need to be sensitive to structural changes
due to damage, while remain insensitive to structural changes due to external effects, like environmental or operational
conditions. The process of learning the patterns drawn by the damage sensitive features extracted from the response of the
healthy system is known as training, while the process of comparing the trained features with those extracted from the
structure under unknown conditions is named testing. One approach to measure the departure of the two populations of
features is to evaluate the squared Mahalanobis distance of the testing features from the trained ones [1, 2].

Let us denote as x a p-dimensional point representing the testing feature vector, and by � and † the mean vector
and covariance matrix of the trained feature population, the Mahalanobis squared distance of x from the trained model
is defined as:

D.x/ D .x � �/T †�1.x � �/: (10.1)
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In the real applications, the values of � and † are unknown, so that an estimate of such statistics is required. Usually, the
unbiased sample counterparts of such statistics are used. Let us assume that the population of training features is collected
into a matrix Y D fy1; : : : ; yng 2 R

p�n: each column of Y represents an observation of a p-dimensional feature vector. The
sample mean of the training data set is given by:

O� D m D 1

n

nX

iD1

yi ; (10.2)

while the unbiased sample covariance matrix of the training set is evaluated according to

O† D S D 1

n � 1

nX

iD1

.yi � m/.yi � m/T : (10.3)

As evidenced by Eq. (10.1), the evaluation of the Mahalanobis squared distance requires the computation of the inverse of
the covariance matrix. Nonetheless, if one is presented with a data set of features of dimension p comparable or larger than
the number of observations n, it is known that the estimate of the covariance matrix using its unbiased sample counterpart
will not be neither accurate, nor reliable in the first case, and not even invertible in the second.

In this paper, three possible alternatives to the canonical damage detection approach are investigated. The first alternative
focuses on decreasing the dimension of the feature vectors by employing a technique based on Discrete Cosine Transform
(Sect. 10.2.1). The second approach overcomes the problem of covariance inversion by employing its pseudo-inverse
(Sect. 10.2.2). The third option proposes the use of the shrinkage covariance matrix in place of the sample one (Sect. 10.2.3).
In Sect. 10.3, the details of the feature extraction procedure and of the damage detection algorithm employed to obtain the
results, presented in Sect. 10.4, are described. Damage detection is attempted using the acceleration time histories recorded
on a four story steel frame excited by means of the shaking table available at the Carleton Laboratory of Columbia University.
To mimic operational conditions variability, two undamaged conditions are considered. Damage is simulated by replacing
some columns with elements of decreased cross section.

10.2 How to Handle Large-Scale Data Sets

10.2.1 Data Compression Using Discrete Cosine Transform

The objective of Principal Component Analysis (PCA) is that of projecting the original data set into a space whose basis are
parallel to the principal components of the data set itself. A detailed treatment on the PCA technique is given in [3]. The
principle behind PCA is that if one starts with a data set constituted of correlated features, it should be possible to decrease
the dimensionality of such features by disregarding the dimensions associated with higher degree of correlation, and retaining
only the ones associated with larger variance.

A popular approach to perform PCA is that of engaging into the Karhunen-Loève Transformation (KLT). Let us assume
that a set of features is collected in a matrix Y D fy1; : : : ; yng 2 R

p�n, whose i th column represents the i th observation
of the p-dimensional feature vector yi . The first operation required to perform KLT is transforming the original data set Y
into one of zero mean, OY. Subsequently, the covariance matrix of OY may be estimated, typically through its unbiased sample
estimate, OS. The next operation requires the evaluation of the eigenvalues and eigenvectors of OS, i.e. the definition of the
matrix of eigenvectors, V, and that of eigenvalues, ƒ, such that:

V�1 OSV D ƒ; (10.4)

where ƒ, is a diagonal matrix, whose main diagonal elements are the eigenvalues of OS sorted in descending order, V is
the corresponding matrix of eigenvectors, whose columns are the eigenvectors of OS arranged such that the first column
represents the eigenvector associated with the largest eigenvalue of OS, while the last column is the eigenvector associated
with the smallest eigenvalue of OS. By pre-multiplying the data points in OY by VT , the data set OY is rotated into a space whose
principal axes are aligned with the eigenvectors of OS: the first axis is associated to the direction along which OY has the largest
variance, while the last dimension is associated with the direction along which OY has the least variance. Then, by picking
only the first d , d � p, elements of the rotated data set, it is possible to reduce the dimensions of the features in OY to a
smaller dimension, without losing much information.
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KLT is optimal in decorrelating the features into the transformed domain, in compacting the most information using only
few coefficients and in minimizing the mean-square error (MSE) between the reconstructed and original feature vector. An
important drawback of KLT is that its basis vectors are data dependent, since the basis functions of KLT are the eigenvectors
of the covariance matrix of the features population. However, the objective of this work is to investigate the case where the
estimation of the covariance matrix is unreliable, due to scarcity of observations. To resolve this vicious cycle, the Discrete
Cosine Transform comes into play [4]. The Discrete Cosine Transform of a data sequence yŒt�;t D 0; : : : ; N �1, is given by:

gyŒk� D ak

N �1X

tD0

yŒt �cos

�
.2t C 1/k�

2N

�
; k D 0; : : : ; N � 1; (10.5)

where ak is equal to
p

2
N

for k D 0, and to 2
N

otherwise, while gy.k/ is the kth DCT coefficient. DCT shares with KLT the
same characteristics of data decorrelation, energy compaction, and minimum MSE between reconstructed and original signal,
but its basis vectors are data independent. In [4], it is shown how the basis vectors of the DCT provide a good approximation
of the eigenvectors of a class of Toeplitz matrices, which are often used to model the data covariance matrix of some weakly
stationary processes. For said reasons, one can avail of DCT to compact data dimensions. In this paper, after having evaluated
the p-dimensional feature vectors, a d -point DCT is applied to each feature instance, where d < p.

10.2.2 Pseudo-Inverse of the Covariance Matrix

In this section, the details of the evaluation of the Monroe-Penrose pseudo-inverse , S�, of a square matrix S of order p

are briefly recalled. Pseudo-inverse computation starts by evaluating the singular value decomposition of the matrix to be
inverted:

UDVT D S; (10.6)

where U; V 2 R
p�p are unitary matrices containing the left and right singular vectors of S, respectively, while D is a

diagonal matrix, whose main diagonal elements, dii ; i D 1; : : : ; p, are the singular values associated with S, sorted in
descending order. The number of non-zero singular values is equal to the rank of the matrix. If S is ill-conditioned, some
of its singular values are very close to zero. The rows and columns of D associated with the r singular values lower than a
prescribed tolerance, � , can be then deleted from D, resulting in a new diagonal matrix OD 2 R

.p�r/�.p�r/ containing only
non-zero singular values. In MatLab the tolerance value is set equal to � � p � max.di i /, where � is the distance from 1 to
the next largest double precision number, that is � D 2.�52/ [5], and max.di i / is the largest singular value. Subsequently, the
last r columns of V and U are discarded, resulting in the matrices OV; OU 2 R

p�.p�r/. Finally, the pseudo-inverse of S can be
defined as

S� D OV OD�1 OUT : (10.7)

10.2.3 Shrinkage Covariance Matrix

Unbiased sample covariance matrix is the covariance matrix estimate most often employed for modeling the correlation
properties of a features data set. However, as pointed out by Stein in [6], such estimate is reliable only as long as the
number of observations is large enough, i.e. only as long as the number of observations, n, is at least one order of magnitude
larger than the dimension of the single observation vector, p. If such condition is not satisfied, the sample estimate of the
covariance matrix produces very poor results. In absence of enough observations, a popular approach is that of considering
only the diagonal elements of the covariance matrix. As well described in [7], while the unbiased sample covariance matrix
has zero bias, i.e. its expected value is prescribed to be equal to the value of the population covariance matrix, †, the
diagonal covariance matrix has minimum variance, but large bias. The shrinkage estimation of the covariance matrix allows
for constructing a covariance matrix that shares the advantages of both models. Denoting as S the unbiased sample covariance
matrix, and as T the diagonal covariance matrix, the shrinkage estimate of the covariance matrix is given by:

S� D �T C .1 � �/S; (10.8)
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where � is known as the shrinkage coefficient. Ledoit and Wolf [8] were the first to propose an analytical formula for the
estimation of the shrinkage coefficient:

� D

pP
iD1

pP
j D1

�
Var.Sij / � Cov.Sij ; Tij /

�

pP
iD1

pP
j D1

.Sij � Tij /2

: (10.9)

Adoption of Eq. (10.9) to estimate the shrinkage coefficient leads to the minimization of the mean square error between S�
and †. Since S� is given by the addition of an invertible matrix with a square matrix, the shrinkage estimate of the covariance
matrix is invertible and can be then used in place of the unbiased sample estimate of †.

10.3 Feature Extraction and Damage Detection Algorithm

In this section, the procedure to extract the damage sensitive feature, as well as the steps involved in the damage detection
algorithm are described. For a more detailed treatment of the feature extraction procedure the reader is referred to [9].

The damage sensitive feature used in this work is a modified version of the Mel-Frequency Cepstral Coefficients. The use
of such feature is novel in the field of civil engineering, but it is customary in the field of speaker and speech recognition [10].
The extraction of such features begins by segmenting the time history in pieces, called frames, short enough to be considered
stationary. Non rectangular windows are then applied to each frame, in order to get rid of undesirable effects at the onset and
offset of the frame spectra. The power spectrum of each frame is then evaluated and warped into a frequency scale given by:

fwarping D fc log2

�
1 C f

fc

�
(10.10)

where fwarping is the value of the frequency in the warped scale associated to the value f of the linear frequency scale, while
fc is a user-defined cutoff frequency representing the boundary of the major power content in the system spectrum. The
relation between fwarping and f is linear up to fc , and becomes logarithmic after such value. Frequency warping is obtained
by grouping together the spectrum values into M critical bands, and weighting each cluster by a triangular filter. The series
of M triangular filters has centers equally spaced on the fwarping scale. In this work, the value of M is set equal to the entire
part of 3 log.fs/, as suggested in [11], where fs is the value of the sampling rate in Hz. In particular, since all time histories
used in this work are sampled at 400 Hz, 15 filters have been used to define the feature vectors. Figure 10.1 represents the
spectrum obtained averaging all time histories recorded for the undamaged scenario 1 described in Sect. 10.4 from which
the selection of fc is made available, and the corresponding triangular filters. Finally, the logarithm of each warped spectrum
is evaluated and the real part of an M -point inverse Fourier Transform is computed via inverse Discrete Cosine Transform.
The first coefficient is then discarded, as it has been demonstrated that such coefficient is very sensitive to external factors
effects, as well as input effects. Let us denote as ` the number of frames in which a time history is segmented, at the end of
this process, ` .M � 1/-dimensional vectors are extracted: the average of such vectors is evaluated leading to a single vector
consisting of .M � 1/ elements. Let us now assume that s sensors are available: in this work, a data set is defined as the
ensemble of s time histories recorded from each available sensor during a single measurement campaign. From each of the s

response time histories, an .M � 1/-point long feature vector is extracted and stacked with the other .s � 1/ vectors, so that
each data set is represented by a feature vector y 2 R

s�.M�1/�1. From now on, for the sake of notation brevity and consistency
with the previous treatments, the dimension of a feature vector extracted from a data set will be denoted as p, i.e. p is equal
to s � .M � 1/.

Let us refer to ntr as the number of data sets available for training. At the end of the feature extraction procedure, if the
technique described in Sect. 10.2.1 is engaged, each of the ntr feature vectors is transformed into a d elements vector by
means of DCT, where d is either equal to 3p

4
if p � ntr , or to 3ntr

4
otherwise.

For the methods described in Sects. 10.2.1 and 10.2.2, the training model is constructed evaluating the sample mean mt r :

mt r D 1

ntr

ntrX

iD1

y.i/ (10.11)
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Fig. 10.1 Warping procedure: (a) cutoff frequency selection, (b) triangular filters

and the unbiased sample covariance matrix St r :

St r D 1

ntr � 1

ntrX

iD1

�
y.i/ � mt r

	 �
y.i/ � mt r

	T
(10.12)

where y.i/ represents the realization of the feature vector extracted from the i th training data set. If the technique described
in Sect. 10.2.3 is engaged, the shrinkage estimate of the covariance matrix, S�, is evaluated in place of S.

The threshold can then be defined. Since the paucity of observations makes the assumption of normally distributed features
difficult to be satisfied, a resampling technique is employed to set the boundary between damaged and undamaged. As
mentioned, the departure of the testing feature from the training model is analyzed by means of Mahalanobis Squared
Distance. The MSD of the i th training feature vector from a population, obtained from the training population from which
the i th realization is left out, is computed. The resulting ntr values are sorted in ascending order, and the value exceeded by
only the 5% of instances is picked as threshold value, � .

Finally, let us denote as nte the number of data sets available for testing. From each available data set, a p-dimensional
feature vector is extracted. If feature dimension reduction is required, a d -point DCT of each testing feature vector realization
is performed, where d has the same values considered for training. If more than one data set is available, the mean of the
available testing vectors, mte, is computed. If nte is equal to 1, as the case for short-time applications, and for the examples
considered in this work, mte is simply the single p-dimensional vector extracted from the only available data set. The
structure can be then declared damaged if

D.mte/ D .mte � mt r /
T S�1

t r .mte � mt r / > �: (10.13)
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where S�1
t r is replaced either by the pseudo-inverse of St r , S�

t r , in case the second method is employed, or by the inverse of
the shrinkage estimate of the covariance matrix, .S�

t r /
�1, if the third approach is considered.

10.4 Results

The structure used to compare the performance of the three proposed approaches is a four-story A36 steel frame with an inter-
story of 533 mm and floor plate dimensions of 610�457�12.7 mm. The floors are braced diagonally in only one direction,
hereafter denoted as strong direction. The structure was excited along the weak direction of bending by means of a medium-
scale uniaxial hydraulic shake table. All structural connections are bolted. In addition to said reference configuration, denoted
as U1 in the following, an additional undamaged scenario (U2) was considered in order to simulate operational variability.
The second undamaged condition is simulated by adding two masses at the third floor between columns A and B, on both
edges C and D. The first damage scenario (D1) was simulated by replacing the column elements on side A of the third inter-
story with elements with a cross-section reduced to 3

4
of the original, while the second damage scenario (D2) was modeled

by replacing all the column elements of the third inter-story by elements of reduced cross-section.
The structure was instrumented with 8 piezo-electric accelerometers located as displayed in Fig. 10.2, measuring

accelerations along the weak direction. The sensor setup is such that also torsional effects may be captured. In fact,
preliminary studies have shown that the structure is not of ideal shear-type kind, but torsional modes in the strong direction of
bending may be identified, even when the load is applied along the weak direction. Four ground acceleration time histories
recorded during El Centro (1940), Hachinohe (1983), Northridge (1994) and Kobe (1995) earthquakes, in addition to the
acceleration time history obtained from the design spectrum of EC8 were applied as inputs. To ensure that the structure was
excited by the proper range of the time histories power spectra, a time scale of 1p

3
was introduced and, to prevent yielding

and additional unexpected damage, the input time histories were properly scaled in magnitude. Inputs and outputs were
sampled at 400 Hz.

The training set is constituted by 50 data sets: for each of the two undamaged scenarios, 5 experiments for each of the five
inputs are considered. The testing set is constituted by 40 data sets, 10 for the undamaged scenarios (5 for each condition),
and 15 for each of the two damaged conditions. Each testing data set is used individually, so that 40 tests are performed. Five
different sensor setups are simulated, using only the response of some instruments. In the following, the five sensor setups
are denoted as S1, S2, etc.: S1) all sensors, S2) sensors 1, 2, 3, 4, S3) sensors 1, 3, 5, 7, S4) sensors 1, 4, 7, and S5) mid-span
floor accelerations. The data set of the last sensor setup is obtained by adding the acceleration response time history recorded
by the sensor on edge C with the one recorded by the sensor on edge D and dividing by 2, at each floor: for example, the first
mid-span acceleration is evaluated by averaging the time histories recorded by sensors 1 and 8.

The results are presented in Table 10.1. In Table 10.1, the error for the individual condition identification, as well as the
overall Type I and Type II errors, are shown. Type I error occurs when a healthy condition is labeled as damaged, while Type
II error occurs when a damaged condition is classified as undamaged. The three approaches presented in Sects. 10.2.1, 10.2.2
and 10.2.3 are labeled as Method 1, Method 2 and Method 3, respectively. In Table 10.1, under each sensor setup label, the
reduced dimension d of the feature vector, its original dimension p and the value of the shrinkage coefficient � are also
presented.

While the first method results in better outcomes for what concerns Type I error, methods 2 and 3 perform generally
better than the first in detecting damage. Firstly, the high Type I error rate observed for some sensor setups for Method
2 is worth of a comment. For each undamaged scenario, only 5 tests are performed: it is sufficient that only one instance
be incorrectly classified as damaged, for that state to be characterized by 20% error. Therefore, even though Method 2
gives certainly the worst results in terms of Type I error, probably the error rate would decrease if more test data sets were
available. On the other hand, the high Type II error rate observed for the first method for the first three sensor setups is due
to a too high threshold value, as shown from Fig. 10.3. The explanation of this behavior is clarified analyzing the results of
Method 4, where, in an attempt to combine the advantages of the three approaches, the three techniques are used together.
This combination is pursued by extracting the damage sensitive features as described in Sect. 10.3, applying the DCT-
based feature dimension reduction, by then modeling the training covariance matrix via shrinkage estimation, and, finally,
by evaluating the squared Mahalanobis distance using the pseudo-inverse of the shrunk covariance matrix. As expected, the
results improve dramatically and clarify that the model of the covariance matrix used in the first method is not reliable enough
to be inverted and delivering accurate squared Mahalanobis distance. In fact, the inaccuracy of the sample covariance matrix
estimate of the features used in the first method is directly related to the value of the threshold, as its inverse is evaluated
to define such value. Indeed, that a well conditioned covariance matrix estimate can deliver accurate results is confirmed
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Table 10.1 Results Sensor Setup State Method 1 Method 2 Method 3 Method 4

S1: U1 0.00% 0.00% 0.00% 0.00%
d D 40 U2 0.00% 0.00% 0.00% 0.00%
p D 120 Type 1 0.00% 0.00% 0.00% 0.00%
� D 0:0164 D1 40.00% 0.00% 0.00% 0.00%

D2 0.00% 0.00% 0.00% 0.00%
Type II 20.00% 0.00% 0.00% 0.00%

S2: U1 0.00% 0.00% 0.00% 0.00%
d D 40 U2 0.00% 0.00% 0.00% 0.00%
p D 60 Type 1 0.00% 0.00% 0.00% 0.00%
� D 0:0163 D1 40.00% 0.00% 0.00% 0.00%

D2 0.00% 0.00% 0.00% 0.00%
Type II 20.00% 0.00% 0.00% 0.00%

S3: U1 0.00% 20.00% 0.00% 0.00%
d D 40 U2 0.00% 20.00% 0.00% 0.00%
p D 60 Type 1 0.00% 20.00% 0.00% 0.00%
� D 0:0165 D1 13.33% 0.00% 0.00% 0.00%

D2 0.00% 0.00% 0.00% 0.00%
Type II 6.67% 0.00% 0.00% 0.00%

S4: U1 0.00% 0.00% 0.00% 0.00%
d D 45 U2 0.00% 20.00% 0.00% 0.00%
p D 36 Type 1 0.00% 10.00% 0.00% 0.00%
� D 0:0169 D1 0.00% 0.00% 0.00% 0.00%

D2 0.00% 0.00% 0.00% 0.00%
Type II 0.00% 0.00% 0.00% 0.00%

S5: U1 0.00% 0.00% 20.00% 0.00%
d D 40 U2 0.00% 20.00% 0.00% 0.00%
p D 60 Type 1 0.00% 10.00% 10.00% 0.00%
� D 0:0168 D1 0.00% 0.00% 0.00% 0.00%

D2 0.00% 0.00% 0.00% 0.00%
Type II 0.00% 0.00% 0.00% 0.00%
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also by analyzing the results of Method 3, where the feature dimensions are not reduced, but the shrinkage estimate of the
covariance matrix is used. It is also noteworthy that the shrinkage coefficient is very small (the values of � oscillate between
0.0163 and 0.0169), so that the correction imposed to the sample covariance matrix is minimal.

10.5 Conclusions

Three alternatives have been proposed to deal with the problem of paucity of data to solve the structural damage detection
assignment, namely reduction of feature dimensionality via discrete cosine transform, inversion of the unbiased sample
covariance matrix via pseudo-inverse, and use of the shrinkage estimate in place of the more common sample estimate of the
covariance matrix. Used by itself, each approach has its own advantages and disadvantages. Mainly, it has been observed that
while reducing the feature dimension to the principal components allows to decrease the Type I error rate, to the detriment
of Type II error, operating on the stability of the inverse of the covariance matrix estimate aids decreasing false acceptance
error, leading, however, to an increase of false alarm error rate. Nonetheless, it has been shown that the advantages of all
methods may be combined by using all alternatives together.
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