A POST-PROCESSING ERROR-CORRECTION SCHEME
USING A DICTIONARY FOR ON-LINE BOXED AND RUN-ON
HANDWRITING RECOGNITION

Homayoon S.M. Beigi and T. Fujisaki
T.J. Watson Research Center
International Business Machines
P.O. Box 704
Yorktown Heights, New York 10598

Abstract

Because of similar shape letters such as ”v” and

”u”; ”k” and ”h”; ”1”, ”1”, and ”I”; and so on,
plus many noisy channels such as digitizer tablets
that intended hand-inputs should go through, any
on-line recognition of handwriting letters cannot
avoid producing errors. The use of a large vocab-
ulary dictionary is necessary to make the system
practically usable. However, imposing a limitation
on the vocabulary handled by a recognition system
is not very desirable for practical purposes. This
paper presents a novel structure of a dictionary-
driven error-correction post-processor for an on-
line handwriting recognition environment which
does not impose any coarse restriction on the vo-
cabulary, however, it makes use of a large dictio-
nary to reduce the errors made by the recognizer.
This error- correction scheme reduces the error of a
run-on and boxed handwriting recognizer by more
than one half.

1 Introduction

The notion of using a handwriting interface
to computers has been of great interest to many
researchers for a number of years. With today’s
technology, a low-priced LCD digitizer tablet for
capturing handwriting is conceivable with a size
no bigger than a notebook. These devices capture
the < z,y > coordinates of the writer’s pen on
the surface of the digitizer tablet. Also, with the
introduction of new pen-based operating systems
such as the Penpoint™ and Pen-Windows™# op-
erating systems handwriting recognition applica-
tions have become very practical. For a survey of

W. Modlin and K. Wenstrup
Entry System Technology
International Business Machines
1000 N.W. 51°* Street
Boca-Raton, Florida 33432

different handwriting recognition methods see [1].

However, because of similar shape letters such
as "v” and ”u”; "k” and ”h”; 717, ”1”, and 17
and so on, plus many noisy channels such as digi-
tizer tablets that intended hand-inputs should go
through, any on-line recognition of handwriting
letters cannot avoid producing errors. The use of
a large vocabulary dictionary is necessary to make
the system practically usable. Imposing a limita-
tion on the size of the vocabulary handled by a
recognition system is, however, not very desirable
for practical purposes. This paper presents a novel
structure of a dictionary-driven error-correction
post-processor for an on-line handwriting recog-
nition environment which does not impose any
coarse restriction on the vocabulary, however, it
makes use of a large dictionary to reduce the er-
rors made by the recognizer. This error- correc-
tion scheme reduces the error of a run-on and
boxed handwriting recognizer by more than one
half. Figure 1 shows a flow-chart of the proposed
error-correction scheme.

2 Description

This error-correction scheme was used with the
IBM discrete and run-on [2] handwriting recog-
nition systems. After the system has made its
based candidates available for the inputted hand-
written word, the error- correction routine takes
over. This routine starts with the recognizer’s top
answer in ascii and a cache of memory containing
the identity and the recognition scores of those
hypotheses which along the search process of the
recognizer were somehow not allowed to mature



into the top recognition result. These hypothe-
ses, however, have had good enough scores from
the stroke matcher to have been extended in the
search process. For a detailed description of the
search process, a definition of strokes and other
relevant information see [2].

As the first stage, a punctuation filter sepa-
rates the punctuation present at the end of the
recognized word and keeps it in a separate buffer.
Then, verify the main body of the word by match-
ing the sequence of characters against a word-
processor dictionary to see if any word exists with
that spelling. This match is case insensitive. The
dictionary which was used here was an IBM word-
processing dictionary with 100,000 words, com-
pressed into an almost 100,000 byte data base. If
the word has a very good overall score from the
recognizer (better than a predefined threshold),
or if it verifies with some existing word in the
dictionary, the original top recognition is passed
through a Case-Correction utility which operates
in a majority-rule fashion.

A simple case-correction utility which was used
here, checks if the first character of the word is rec-
ognized as a capital letter, and retains that letter.
Then it counts the number of lower case and up-
per case characters and based on a majority ruling
decision, converts the case of characters to get a
uniform, gramatically acceptable case sequence. A
more advanced version of this case-correction util-
ity has also been used which carries information
about special cases in addition to some matrix of
confusions for that particular writer.

If the word does not verify with the dictio-
nary, a character-match score is associated with
it. This character match score is simply the sum
of scores of the individual characters in the recog-
nized word, given by the recognizer. Then, the
main body of the recognized sequence of char-
acters is sent to the stroke-match and spell-aid
blocks to obtain a list of candidates for the in-
tended word. These two blocks access the word-
processor dictionary to obtain their candidates.

Along the search process, the top Match hy-
potheses are kept in a cache along with their scores.
Basically, the objective of the stroke-match is to
generate all the possible words from the strokes
in this cache and to calculate the total matching

score of each of these words. Then the N word
hypotheses with the best matching scores are in-
serted into the global word hypothesis list.

The spell-aid module takes the recognition out-
put and tries to find words in the dictionary which
resemble this sequence of characters and inserts
them in the global word hypothesis list. This
module’s output is very dependent on the initial
characters. Therefore, most of the time, the first
character of the input word is retained.

Since the stroke-match and spell-aid modules
produce outputs heavily dependent on the first
character of the input, for the Boxed mode, if
the first recognized character, has the worst score
among all the characters recognized in that word,
an additional word hypotheses is created by re-
placing the first character of the originally recog-
nized word with other candidates from the stroke
cache. If the newly fromed word is not verified,
other characters in the alphabet are tried in the
order of their probability of occurance as the first
letter of a word. This probability distribution has
been obtained from a list of 270,000 words and
their frequency in the English language, extracted
from a 320,000,000 word corpus.

The shape-matching scores of the input word
are then obtained from the inputted cache and
normalized between 0 and the highest score in the
character sequence.
formed such that the highest score is the best score
and 0 is the worst score (Call this the character-
match Score.) For the characters in the input
string which have not been recognized (wild-card
characters), a score of -1 is assigned which makes
their matching score worse than any other char-
acter’s score. At this time, look at the hypothe-
sized words given by Spell-Aid or Stroke-Match.
If the characters in those hypotheses are present
in the candidate list, assign to them their corre-
sponding score transformed in the above manner.
If any character in the hypothesis does not have
a stroke-match associated with it, then give that
character a score 0 in the transformed space (worst
character-match score). For each word hypothe-
sis in the list, count the number of substitutions

Then the scores are trans-

made from the original recognition to the hypothe-
sis. (Call this the Substition Score.) For every hy-



pothesized word also calculate the difference in its
length and the length of the recognized sequence.
(Call this the word-length Score).

In the the created list of hypotheses, the best
hypothesis is the one which has the following prop-
erties in descending order of importance:

1. Smallest word-length score.

2. Smallest substitution score.

3. Smallest sum of absolute value of the differ-
ences of the character-match scores between the
hypothesis word and the originally recognized word.
If there is a character in the original recognition
with a character score equal of -1, then that word
hypothesis which changes this character has higher
priority.

To maintain a robust performance, the post-
processor will return the original answer of the
recognition, if its total word-match score is better
than some threshold. This ensures that carefuly
written words which are not in the dictionary are
still returned untouched, taking away the limits
imposed by a limited vocabulary. Once a word hy-
pothesis is chosen to be the final answer from the
recognition, it passes through the case-correction
block and is padded with possible punctuation
filtered initially. This is the final answer of the
recognition system.

3 A Test of the System

Table 1 presents the results from a test con-
ducted over 12 writers with an average of 1250
characters of writing for each writer in Boxed mode,
and 180 characters in Run-On mode. The charac-
ter recognition errors have been shown to decrease
by more than 50%.

At the time of search, some possible sequences,
although valid words, might get a lower prece-
dence and therefore not be chosen as the best hy-
pothesis. It is desirable to retrieve the best of
those words. Also, although character accuracy
is an important goal, sometimes, a high character
accuracy might be obtained with a very low word
accuracy. In the case of natural writing, low word
accuracies are not desirable and no matter how
high the character accuracy is, sometimes, it is im-
possible for a human to understand the intended
written text. However, with a high word accu-

racy, even if the character accuracy is not great,
the content of the writing is more likely to be un-
derstood. The Word accuracies were increased us-
ing the dictionary error correction by over 30% in
the case of boxed and about 20% in the case of
Run-On writing.

In the proposed system, the dictionary error
correction is turned off when correcting (overwrit-
ing) all or part of a word. This ensures the ability
to correct a word once the wrong recognition re-
sult is provided.

4 Conclusion

The basic features of the post-processor are
summarized as follows:

1. The Dictionary is an external and indepen-
dent module which could easily be replaced.

2. The Error Correction Logic is independent
of the language and the replacement of dictionary
module is sufficient for supporting different lan-
guages. The system supports very large dictio-
naries (A dictionary of 100K compressed words is
currently being used).

3. Even though the error correction module is
designed to be placed downstream from the shape-
matcher and segmenter modules and operate as a
post-processor, it has an interface through which it
receives shape-matching information from the rec-
ognizer. Most post-processing methods use some
sort of a confusion matrix to try new candidates
for the characters. In here, the module will use
the information obtained from shape matching to
dynamically generate a confusion matrix for the
user and to use those confused candidates for cor-
rection. This information (list and scores of alter-
native candidates from shape-matching, etc.) is
being utilized to obtain optimal error-correction.

4. Most of the dictionary driven error-correction
back-ends will map a given word to a word in the
dictionary which is closest to it, in some defined
distance. However, this is not practically usable
in real application environments. The intended
text may contain words which are not a part of
the particular vocabulary being used (e.g.,proper
nouns). The Proposed system will allow users to
override the dictionary vocabulary constraint by



writing carefully. Carefully written words will not
be changed by the error-correction module even if
they are not a part of the vocabulary. This is made
possible by using the information from the shape-
matcher on the closeness of the matched candi-
dates to the actual writing.

5. In some cases, all the candidates for a char-
acter are refused by other modules (such as lan-
guage models) at the search level. In these cases,
no character is returned for corresponding loca-
tions in the word. This module makes the revival
of these characters higher priority than changing
the characters in other positions for obtaining a
word which will verify through the dictionary.

6. Most existing dictionary modules, which are
used for spell-aid of word-processors, are very de-
pendent on the first character. This module, al-
lows the usage of these existent modules by con-
ducting a separate search for the possible candi-
dates for the first character. The shape-matching
information is used to assess the reliability of the
first recognized character compared to the rest of
the characters in the word. If the first character
is not reliable, then it will try replacing it with
other candidates from the shape matching. If the
newly formed word is not verified, the module will

try other characters in the alphabet in the order
of their probability of occurance as the first letter
of a word. This probability distribution has been
obtained from a list of 270,000 words and their
frequency in the English language, extracted from
a 320,000,000 word corpus.

A system having the above features was imple-
mented and has improved word accuracy by up
to 30% while reducing the error by over 1/2 in a
large-scale system evaluation test with 12 external
handwrinting subjects.

References

[1] C.C. Tappert, C.Y. Suen and T. Wakahara,
“The State of the Art in On-Line Hand-
writing Recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence,
Vol. 12, NO. 8, pp. 787-808, August 1990.

T. Fujisaki, H.S.M. Beigi, C.C. Tappert, M.
Ukelson and C.G.Wolf, “Online Recognitoin of
Unconstrained Handprinting: A Stroke-based
System and Its Evaluation,” , 5. Impe-
dovo, Editor, ELSEVIER: Italy, 1992.

Figure 1: Flow-Chart of Dictionary Post-Processor

Accuracy (No Dict.)

Boxed WalkUp
Boxed Trained
Runon Walk Up

Runon Trained

Accuracy (Dict.)
79.6% 89.2%
92.1% 96.9%
70.1% 73.2%
87.9% 91.5%

Figure 2: Post-Processing Language Model



5 Dictionary Functions

All the functions which access the compressed dictionary, including the spell-aid and the stroke-
match functions, rely on a common search routine to provide the search navigation and to explode the
words from their compressed form. This search routine then utilizes caller provided routines to perform
the functions necessary for the specific access method, including: initializing the search structures,
testing whether to search a specific letter of the alphabet, and comparing a word extracted from the
dictionary against the input according to the access criteria. High level pseudocode for the search
routine follows:

Initialization (access method specific function)
FOR each letter of the alphabet
IF search this letter (access method specific test)
FOR each word under this letter
Extract word
IF not in proper length range
continue
Compare dictionary word with input
(access method specific function)

6 Appendix: Dictionary Functions

The test to determine whether to search a letter of the alphabet is generally simple for both spell-aid
and stroke-match. In the spell-aid function, usually only those words beginning with the same letter
as the input word are searched. In a few cases where the first letter might be confused (for example,
words beginning with ’ph’ or ’f’), additional letters are searched if the first letter does not yield a
good result. In stroke-match, a letter is searched if it is one of the choices for the first stroke in the
stroke-match pattern.

Once the function decides to search a letter, every word under that letter is extracted from the
dictionary. Some words are discarded immediately if their lengths do not fall within the acceptable
range for the given input word or pattern. The acceptable range of lengths is determined at initial-
ization time. For spell-aid, the difference in length to allow between the input word and a matching
dictionary word is supplied as an argument to the spell-aid function. The range of lengths for the
stroke matching routine is determined by an algorithm which goes through the pattern stroke by stroke
and progressively determines the minimum and maximum lengths a word can be which fits the pattern.

Once a dictionary word is determined to fall within the allowable range of lengths, it is compared
against the input word or pattern using the appropriate word testing function. This results in a scalar
score for each word. The 'n’ best results are returned, where 'n’ is a caller supplied value.

6.1 Stroke-Match:

For boxed recognition, replace the wild character with the best hypothesis in the cache. Then keep
a list of all the scores for the characters in the recognized sequence.



The stroke-match algorithm determines which words from the dictionary fit a supplied stroke pat-The varial
tern. Each element of the input stroke pattern contains the following information: a possible character,
the beginning stroke, the number of strokes used by this possibility, and the score for this choice. The
output from this algorithm is a list of dictionary words which fit this pattern along with their cumu-
lative scores.

This stroke pattern is used to build a table during initialization. In this two-dimensional table,
rows represent strokes and columns represent the character (first column=a, second column=Db, etc.)
Each entry contains the score for this character starting at this position, and the number of strokes
(stored as a 16 bit entry). In this way, when a dictionary word is to be compared to the pattern, it is
a simple task to traverse the table. Start at the first row. If the first character can start with the first
stroke, start a score counter with this score, and add the number of strokes needed to the row counter.
Success is achieved if we finish the dictionary word with the number of strokes in the pattern, and a
score has been computed from the stroke scores.

One complicating factor arises from the fact that we can have the same character possibility in the
stroke pattern beginning at the same character with different numbers of strokes. For example, we
can have a two or three stroke ’a’ beginning at stroke one. We want to store both possibilities since
they can contribute to forming completely different words. However, each entry in the table has room
for only one 16 bit entry. To accomodate this situation, there is a secondary table called the dups
table. When two different stroke lengths for the same character in the same position arise, the main
entry in the stroke-match table sets its highest order bit which is reserved to indicate this situation.
The rest of the main entry is a row index into the dups table. The dups table then contains entries in
this row as would be found in the main table. The dups table is limited to four columns so that we
can store a maximum of four different stroke lengths for this character at this position.

To use the dups table, we must now introduce a stack in the search process. When we reach a
letter in the dictionary word for which there are multiple stroke length possibilities in the dups table,
we store all the information needed to return to this point in the search in the stack along with the
score for each of the different lengths. If our search fails using one of the lengths for this character,
we can then pop off the stack back to this decision and try a different stroke length.

One additional heuristic has been added to the stroke-match algorithm to make it more robust for
stroke-match patterns which might be missing the correct answer for one or two of the stroke positions.
Upon entry, the best choice for the characters fitting this pattern are supplied (not necessarily a word.)
During initialization, the table is searched for this character pattern and the scores and stroke lengths
of each of the characters is recorded. Then, during the search for any dictionary word, if we come
to a position in which no entry exists for the needed character in this position, we look to the top
choice array. If the best choice for this position is greater than a certain threshold, we assume that no
really good choices exist for this position. Then, the needed character is assumed to be in this posi-
tion with the same number of strokes as the top score answer. The inserted character is given a bad
score so that we are penalized for having to go out of the stroke-match table to fit the dictionary word.

6.2 Spell-Aid:

The spell-aid algorithm uses a simple one pass comparison between the input word and the
dictionary word to determine a score for the match. As the words are scanned, two counters are kept.



variable ”contig” counts the number of pairs of contiguous characters which were successfully
matched.

During the match, a pointer into each word is kept until one of the pointers reaches the end of
its word. During each step of the algorithm, we first try to match directly the characters pointed to
by the two pointers. If these characters match, then the match counter is incremented. The contig
counter is incremented if this is the second exact match in a row.

If there is not an exact match, however, some fitting matches are tried. First, we attempt to trans-
pose the following two characters in one of the words and match these two characters in their new
order. If this transpose works, then the "match” counter and pointers are all incremented by two, but
the ”contig” counter is not incremented.

If the transpose match doesn’t work, an attempt is made to skip a letter in either of the words. If
this succeeds, the "match” counter is incremented one and the word pointers are moved to after the
matching characters. Next a ”stretch” match is attempted by skipping two letters in the longest word
and attempting a match. If none of these fitting matches succeeds, then each of the word pointers is
incremented without affecting the "match” counter.

After one of the pointers traverses its entire word, a score is determined for this word. The primary
score is determined as:

(2 * match) - (difference in lengths)

This score is then shifted left by eight, and the ”contig” counter is added. In this way, the match is
given a 16 bit score in which the above value is the primary deciding factor and the ”contig” counter
acts as a tie breaker.



