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MONITORING HEALTH OF DYNAMIC 

SYSTEM USING SPEAKER RECOGNITION 
TECHNIQUES 

BACKGROUND OF THE INVENTION 

Most legacy techniques in health monitoring of structures 
use models of the structures which are quite structure 
dependent and expensive to generate. Also, these models 
could be imprecise and far from the true nature of the 
structure, especially when the structure has a complex 
architecture. 

SUMMARY OF THE INVENTION 

Applicants have determined that a passive technique that, 
in some embodiments, simply monitors the vibration signal 
of a structure or other dynamic system, and learns its 
nominal vibration, is much preferred to physical models of 
the structure being monitored. Furthermore, Applicants have 
determined that vibration data from a structure can be used 
to distinguish degree of damage to the structure by process- 
ing with speaker recognition techniques. As used herein, a 
dynamic system refers to any item that is able to propagate 
vibrations, and includes architectural structures such as 
buildings and bridges, vibrating machinery, geological fea- 
tures, and other objects. A dynamic system is considered 
healthy if suitable for its intended purpose for an extended 
period of time and considered unhealthy if damaged or 
approaching a state of failure for its intended purpose. 

In a first set of embodiments, a method for monitoring 
health of a dynamic system includes determining a system- 
independent statistical model, and determining a healthy 
system model based on data representing vibrations of 
multiple healthy bodies and the system-independent statis- 
tical model and speaker recognition techniques. Vibration 
data are obtained from a particular dynamic system. The 
method includes determining whether the particular 
dynamic system is healthy based on the vibration data from 
the particular dynamic system and the system-independent 
statistical model and the healthy system model and speaker 
recognition technique. 

In a second set of embodiments, a method includes 
obtaining training data that represents vibrations of a healthy 
dynamic system under multiple conditions. A damage-sen- 
sitive parameter is based on the training data by warping a 
frequency scale of the training data. A threshold value that 
separates damaged systems from healthy systems is based 
on the training data and the damage-sensitive parameter. It 
is determined whether a particular system is healthy based 
on the threshold value and a value for the damage-sensitive 
parameter for vibration data from the particular system. 

In other sets of embodiments, an apparatus performs, or a 
computer-readable medium causes an apparatus to perform, 
one or more steps of one or more of the above methods. 

Still other aspects, features, and advantages of the inven- 
tion are readily apparent from the following detailed 
description, simply by illustrating a number of particular 

embodiments and implementations, including the best mode 
contemplated for carrying out the invention. The invention 

is also capable of other and different embodiments, and its 
several details can be modified in various obvious respects, 

all without departing from the spirit and scope of the 
invention. Accordingly, the drawings and description are to 

be regarded as illustrative in nature, and not as restrictive. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention is illustrated by way of example, 

and not by way of limitation, in the figures of the accom- 
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2 
panying drawings and in which like reference numerals refer 

to similar elements and in which: 

FIG. 1 is a diagram that illustrates example voice and 

structural vibrations, according to an embodiment; 

FIG. 2 is a flow diagram that illustrates an example 

method to determine damaged structures, according to an 

embodiment; 

FIG. 3 is a diagram that illustrates example structural 

models for simulations to test the method of FIG. 2, accord- 

ing to an embodiment; 

FIG. 4A is a flow diagram that illustrates a method to 

compute the cepstral coefficients for voice data; 

FIG. 4B is a graph that indicates triangular filters spaced 

equally in a warped frequency scale for speaker recognition; 

FIG. 5A is a graph that illustrates an example selection of 

a cutoff frequency for adjusting cepstral coefficients for 

vibration data, according to an embodiment; 

FIG. 5B is a graph that illustrates example triangular 

filters spaced equally in an example warped frequency scale 

based on cutoff frequency for vibration data, according to an 

embodiment; 

FIG. 6A is a flow diagram that illustrates an example 

method for determining a number L of cepstral coefficients 

to use in a damage sensitive feature, according to an 
embodiment; 

FIG. 6B is a graph that illustrates example dependence of 
energy in a sequence of cepstral coefficients compared to 

total energy for determining the number L, according to an 

embodiment; 
FIG. 7A through FIG. 7C are portions of a flow diagram 

that illustrates an example method for determining and using 
a damage threshold for the damage sensitive feature, accord- 

ing to an embodiment; 

FIG. 8 is a diagram that illustrates an example simulation 
for testing the method of FIG. 7A through FIG. 7C, accord- 

ing to an embodiment; 
FIG. 9A and FIG. 9B are diagrams that illustrate an 

experimental setup from which data was used for testing the 
method of FIG. 7A through FIG. 7C, according to an 

embodiment; 

FIG. 10 is a block diagram that illustrates a computer 
system upon which an embodiment of the invention may be 

implemented; and 
FIG. 11 illustrates a chip set upon which an embodiment 

of the invention may be implemented. 

DETAILED DESCRIPTION 

A method and apparatus are described for monitoring 

health of dynamic systems using speaker recognition tech- 
niques. In the following description, for the purposes of 

explanation, numerous specific details are set forth in order 
to provide a thorough understanding of the present inven- 

tion. It will be apparent, however, to one skilled in the art 
that the present invention may be practiced without these 

specific details. In other instances, well-known structures 

and devices are shown in block diagram form in order to 
avoid unnecessarily obscuring the present invention. 

Some embodiments of the invention are described below 
in the context of buildings and bridges as structures. How- 

ever, the invention is not limited to this context. In other 
embodiments the techniques are applied to other dynamic 

systems, including architectural structures for human occu- 

pation or not, such as bridges, and vibrating machinery, 
manufactured devices, geologic formations and woody parts 

of living or deceased organisms.
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To assess the health and integrity of structures such as 

bridges and buildings, some training data is available from 

the structure of interest at its healthy state. The data is 

expected to be in the form of a signal in time which may be 
provided by sensors such as strain gauges and accelerom- 

eters. Applicants have determined that the signal, being a 
vibration signal, can be processed as speech signals to 

identify and verify identities of individuals. It has been 
determined that the techniques for handling speech may be 

used in order to learn the healthy states of structures. Once 

the data for the healthy states has been modeled, using 
speaker modeling techniques, deviations from these healthy 

states are identified using the techniques of speaker verifi- 
cation. As used herein, speaker recognition techniques 

include techniques of speaker modeling and speaker verifi- 
cation. 

In using speaker and speech recognition techniques in 

health monitoring of structures, a large training data is 
advantageous to be able to create a generic model of the 

structural dynamics. Since these techniques are statistical in 
nature, a large amount of data improves accuracy for the 

estimation of the many statistical parameters that make up 
the models. However, only a small amount of data is 

extracted usually from structures such as bridges and build- 

ings compared to the amount of data used for speaker 
recognition. One reason for this is that such structures 

possess very low fundamental and higher harmonic frequen- 
cies compared to speech. Another reason is that there are far 

fewer such structures than people. Therefore, the number of 
data samples collected over time is small compared to 

speech. In contrast, providers of speech recognition systems 

(such as RECOGNITION TECHNOLOGIES, INC.™ of 
Yorktown Heights, N.Y.) possess speech data from on an 

order of millions of speakers. It is quite impractical to have 
structural vibration data from on an order of millions of 

structures. 

Furthermore, structure vibration data is collected at a 
sampling rate of about 100 Hertz (Hz, 1 Hertz=1 sample per 

second). In contrast, the speech data is sampled at a much 
higher sampling rate, such as 8 kiloHertz (kHz, 1 kHz=10* 

Hertz), providing many more samples. 
FIG. 1 is a diagram that illustrates example voice and 

structural vibrations, according to an embodiment. The 

diagram takes the form of a hypothetical plot with a hori- 
zontal axis 102 representing time in seconds and a vertical 

axis 104 representing amplitude in arbitrary units. Trace 110 
represents hypothetical structural vibrations that have rela- 

tively large amplitude but low frequencies and harmonics, 
well sampled at a sampling rate of 20 Hz. Trace 120 

represents hypothetical voice vibrations that have relatively 

smaller amplitude but much higher frequencies and harmon- 
ics, involving a sampling rate of over 8 kHz. 

Applicants have determined that at least one approach to 
speaker recognition achieves some efficiencies that allow 

those techniques to be used with the limited amount of 
structural vibration data. These techniques are mentioned in 

Appendix A and described by Homayoon Beigi, Fundamen- 

tals of Speaker Recognition, Springer, New York, 2011, 
ISBN: 978-0-387-77591 (hereinafter Beigi), the entire con- 

tents of which are hereby incorporated by reference as if 
fully set forth herein. The speech data processing of Beigi is 

used for creating structure-independent statistical models 
and other system-independent statistical models. 

The statistical techniques used in speaker recognition (see 

Beigi) develop a speaker-independent statistical model 
which is the basis for modeling speaker dependent traits. 

Much in the same way, a structure-independent statistical 
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4 
model is developed for structures, or, more generally a 
system-independent statistical model is developed for 

dynamic systems. Since speech and dynamic system vibra- 

tion are both natural vibrations, in some embodiments the 
speaker-independent data already available from speaker 

recognition systems is used as a system-independent statis- 
tical model, e.g., a structure-independent statistical model in 

the following embodiments. Thus, in some embodiments, 
the speaker-independent statistical model is used to generate 

the system-independent statistical model. In some embodi- 

ments, the speech or dynamic system vibration data under- 
goes one or more transformations in the frequency or time 

or feature domain to account for the basic differences in the 
systems producing the vibration, e.g., human voice box 

versus wind and machinery. For example, the structural 
vibration trace 110 is normalized in amplitude and com- 

pressed in time (e.g., by a factor of 100/8000=0.0125) to be 

more similar to the voice vibration trace 120 so that existing 
speaker recognition systems can be used intact. In another 

example embodiment, the speaker-independent statistical 
model is transformed in frequency or amplitude or cepstral 

components, or some combination, to be comparable to the 
structure vibration data. 

The approach presented herein is a passive technique that 

simply monitors the vibration signal of the dynamic system 
and learns its nominal vibration. This is preferred to the 

previous techniques of modeling the dynamic system and 
predicting its vibrational modes. This new approach is 

derived from the techniques that are used for modeling the 
identity of a speaker in speaker recognition. The speaker 

recognition techniques evolved due to the fact that it is very 

hard to model the vocal tract of a speaker with sufficiently 
good precision. One of the most popular features being used 

in speaker recognition is the set of Mel-cepstral coefficients 
derived from modeling echoes. There are also many other 

features such as amplitude modulation (AM)/frequency 

modulation (FM) modulation features, wavelet octave coef- 
ficients of residues (WOCORs), etc., all described in Beigi. 

These and other related features are utilized in various 
embodiments in order to model the structures of interest. 

FIG. 2 is a flow diagram that illustrates an example 
method to determine damaged structures, according to an 

embodiment. Although steps are depicted in FIG. 2, and 

following flow diagrams in FIG. 6A and FIG. 7A through 
FIG. 7C, as integral steps in a particular order for purposes 

of illustration, in other embodiments, one or more steps, or 
portions thereof, are performed in a different order, or 

overlapping in time, in series or in parallel, or are omitted, 
or one or more additional steps are added, or the method is 

changed in some combination of ways. 

In step 201, vibration data from one or more dynamic 
systems are obtained and transformed as desired for use with 

a speaker recognition system. For example, vibration data 
collected routinely at bridges and other structures over the 

past 15 years are obtained as data files, on one or more 
computer readable media or transmitted from a remote 

computer or server or database, or entered manually, or 

scanned and digitized from hardcopies, or some combina- 
tion. In some embodiments, measurements are collected 

directly from sensors mounted on one or more structures. In 
some embodiments, the transformation is omitted. In some 

embodiments, the transformation includes compressing the 
time axis so that the variations fall in the frequency band of 

human voices, or normalized in amplitude so that maximum 

amplitude is 1.0, or some combination. In some embodi- 
ments, other transformations are performed on the data. For 

example, the amplitudes are normalized for a mean of 0.0
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and a standard deviation of 1.0. In some embodiments, the 
cepstrum is taken, which is the Fourier transform of the 

logarithm of the frequency spectrum of the vibrations. In 

some embodiments, these transformation are performed in 
some combination. 

In step 202 it is determined whether there is sufficient 
training data for a specific system. If so, control passes to 

step 211, described below. If not, control passes to step 203. 
In step 203, a system-independent statistical model is 

determined based on speaker recognition techniques. For 

example, in some embodiments, the vibrational data 
obtained in step 201 is processed to characterize the features 

of structural vibration that are found in every structure or 
every structure of one type (e.g., different types including 

bridges or steel skeleton high rises, or stone walls, among 
others). In some embodiments, the structure-independent 

statistical model is based on the transformed or untrans- 

formed speaker-independent statistical model of voices from 
a speaker recognition system (e.g., from RECOGNITION 

TECHNOLOGIES, INC.™), and step 201 is omitted. In 
other embodiments, some combination is used. 

In step 205, a catalog of the distinctive vibrational fea- 
tures of certain groups of dynamic systems, such as healthy 

bridges or slightly damaged bridges or heavily damaged 

bridges, are learned, e.g., by cluster analysis, based on 
vibrational data from those dynamic systems and deviations 

from the system-independent statistical model. The tech- 
niques of speaker recognition that determine the dynamic 

systems are transformed for use with existing speaker rec- 
ognition systems. For example, the time is compressed so 

that variations fall in the frequency band of human voices, 

and the amplitudes are transformed using any method, such 
as one or more of those described above. For example, in 

some embodiments the vibration data from one or more 
recently inspected suspension bridges are used to generate a 

healthy system model based on features that distinguish 

them from the well sampled speaker-independent statistical 
model. Any features may be used for the healthy system 

model, such as the percent occurrence of each cluster of a 
number C of clusters defined for the transformed speaker- 

independent statistical model, or deviations from the percent 
occurrence of those clusters in the speaker-independent 

statistical model. 

In step 207, vibrational data from a particular dynamic 
system is obtained. For example vibration data from a 

particular bridge or building is obtained. Any method may 
be used to obtain this data, as described above. In some 

embodiments, the vibrational data from that dynamic system 
is transformed for use with existing speaker recognition 

systems. For example, the time is compressed so that 

variations fall in the frequency band of human voices, and 
the amplitudes are transformed using any method, such as 

one or more of those described above. 
In step 209, it is determined whether the particular 

dynamic system is healthy or not based on the vibration data 
from the particular dynamic system and speaker recognition 

techniques, such as the Mel cestrum coefficients described 

below or the system-independent statistical model. For 
example, deviations from a structure-independent statistical 

model are used to define features of the particular structure 
and then deviations of those features from the closest 

features belonging to one of the groups of structures learned 
in step 205 are determined. Based on deviations from the 

healthy system model, the particular dynamic system (e.g., 

a particular bridge or particular generator) is determined to 
be healthy or suffering some degree of damage. For example 

if the deviations from several features are large enough 
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6 
compared to the standard deviations for the healthy system 

model, the particular system may be deemed damaged or 

tending toward unsuitability. If features of unhealthy or 

unsuitable categories have been defined in step 205 in some 

embodiments, then the particular dynamic system is grouped 

in that unhealthy or unsuitable category if its features are 

close to those of that category. Thus health can be assessed 

compared to the features of a healthy category or the features 

of an unhealthy category, or both. 

In step 221, the dynamic system is operated in response 

to the determination whether the dynamic system is healthy 

or not. For example, if well within the healthy conditions, 

the dynamic system is operated normally with no changes. 

If conditions have moved toward a damaged state or are 

close to the damaged state threshold, then, in some embodi- 

ments, additional monitoring is performed, either by col- 

lecting vibration data more often, or for longer durations, or 

at different or more locations on the structures of the 

dynamic system, or some combination. In some embodi- 

ments, other operations are modified. For example, the 

dynamic system is operated less frequently or for shorter 

times or maintenance is performed more frequently, or the 

system is taken apart and reassembled with one or more 

replacement parts. If conditions have exceeded the damaged 
state threshold, then, in some embodiments, the system is 

subjected to diagnosis for failure, or taken apart and reas- 
sembled with one or more replacement parts, or retired from 

operation, or some combination. 

In some embodiments, if it is determined in step 202 that 
there is sufficient training data, then control passes to step 

211 and then step 207 described above. In step 211, a 
damage sensitive parameter based on frequency warping and 

number of cepstral coefficients is determined; and, a thresh- 

old is determined to separate damaged from undamaged 
states of the dynamic system, all based on training data for 

one or more healthy systems. In step 209, it is determined 
whether the dynamic system is healthy or not based on the 

damage sensitive parameter and the threshold. 

Example Embodiments 

Speaker Independent Voice Model 

According to an example embodiment, to demonstrate 

feasibility, step 205 is performed with simulated data rather 
than with actual vibration data. In this embodiment, step 201 

is omitted and step 205 is performed by retrieving the 
speaker-independent statistical model of human voice from 

RECOGNITION TECHNOLOGIES, INC. 
Vibrational data is simulated for a structure with N 

degrees of freedom, such as a building with N floors. FIG. 

3 is a diagram that illustrates example structural models for 
simulations to test the method of FIG. 2, according to an 

embodiment. Each floor is represented by a horizontal beam, 
such as beam 312 and two or more supporting walls, such as 

walls 314. A building comprises one or more floors, such as 

first floor 310 with beam 312 and walls 314, a second floor 
320, any intervening floors 330 represented by ellipsis, and 

a last, Nth, floor 340. A shear displacement of value x is 
represented by a horizontal displacement, such as first floor 

displacement x 316. A vibrational wave propagates perpen- 
dicular to the displacement, e.g., in propagation directions 

318. The vibration measured at a location on the building is 

the sum of the propagating vibrations that reach that point, 
assuming displacements are in the elastic range, e.g., not so 

great as to rupture the building materials.
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For such a structure with N degrees of freedom, the 

equations of motion are given by Equation 1. 

[AM] {x"}+/L] {x} +aB/K]{x}=aff} 

where 

x is the nodal displacement vector of N elements (1.e., 

ER*"), 
x' is the nodal velocity vector of N elements (i.e., ER*~"); 

x" is the nodal acceleration vector of N elements (1.e., 

ER*"), 
[K] is the stiffness matrix of NxN elements (i.e., ER”); 

[L] is the damping matrix of NxN elements (i.e., E<R*~*); 

[M] is the mass matrix of NxN elements (i.e., ER”); 
a is a coefficient that takes into account the system 

frequency content magnitude; 

6 is a coefficient that takes into account the damage 

severity; and 

fis a vector of nodal forcing functions of N elements (1.e., 

ER*"), 
Four different structures have been considered, repre- 

sented by 1, 3, 5, and 7 degrees of freedom (DOFs) 

shear-type systems. Two dramatically different values were 

considered for a, namely 1 and 5000, to test the performance 

of the recognition system when dealing with signals with a 

frequency content typical both of civil engineering struc- 

tures (a=1, designated “S1”) and of speech (a=5000, des- 

ignated “S2”). To 6 have been assigned the values 1 (healthy 

state, designated “H’’), 0.5 (damage scenario 1, designated 

“D1”) and 0.1 (damage scenario 2, designated “D2”). Then, 

for a given number of degrees of freedom, six different 

scenarios have been simulated as listed in Table 1. 

(1) 

TABLE 1 

Simulation scenarios. 

identifier a p 

S1,H 1 1.0 
$1, Dl 1 0.5 
S1, D2 1 0.1 
82, H 5000 1.0 
82, Dl 5000 0.5 
$2, D2 5000 0.1 

For each one of the 6 possible states, each system was 

excited by a white noise input applied at each degree of 

freedom and the corresponding acceleration response time 

histories were collected for the identification tests. No 

measurement noise was simulated. The accelerograms were 

fed to the speaker recognition system of RECOGNITION 

TECHNOLOGIES, INC.™ and subjected to front-head pro- 

cessing consisting of pre-emphasis and high-pass filtering. 

The enrollment into categories of structures for step 205 was 

performed through 1 minute long time histories sampled at 

8 kHz; while for the testing, in step 207, 30 seconds long 

records sampled at 8 kHz were employed. 

The results are listed in Table 2. In Table 2, the first 

column indicates the label for the considered experiment and 

number of degrees of freedom of the simulated structure (all 

six scenarios were run for each); the second column indi- 

cates from which degree of freedom the acceleration time 

history used for the test has been recorded; the third column 

indicates whether mean-cepstral subtraction has been per- 
formed; finally, the fourth column represents the level of 

accuracy reached in the experiment. 
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TABLE 2 

Simulation results. 

Accuracy 

Location of vibration Mean ceptstral (Correctly 

Experiment time history subtraction recognized/total) 

1:N=1 1* floor Yes 6/6 

2:N 3 1* floor Yes 6/6 

3:N=5 1* floor Yes 6/6 
4:N=7 1* floor Yes 5/6 

" 2nd floor Yes 5/6 

" 3rd floor Yes 6/6 

" Ath floor Yes 3/6 

" 5th floor Yes 5/6 

" 6th floor Yes 4/6 

" 7th floor Yes 6/6 

5:N=7 1* floor No 6/6 
" 2nd floor No 6/6 

" 3rd floor No 6/6 

" Ath floor No 6/6 

" 5th floor No 6/6 

" 6th floor No 6/6 

" 7th floor No 6/6 

At the time of the enrollment, for each kind of structure, 

6 possible states are trained. At the time of testing, the task 

of the recognition system is that of matching correctly the 

enrolled state with the tested one. For example, during 

Experiment 2, where the acceleration time history recorded 

from the 1st floor has been employed, all the 6 states have 

been identified correctly. In contrast, during the fourth 
experiment, when using the 4th floor time history, only 3 out 

of 6 states have been identified correctly. In this regard, it is 

worth noting that avoiding the subtraction of the mean 
cepstral value yields 100% accuracy for the 7 DOFs system, 

as shown in experiment 5. 
Results of these simulations show that different conditions 

of multi-story buildings may be distinguished with great 

accuracy. Also, it has been shown that real bridge conditions 
may be identified by using the vibration signal to adapt a 

speaker-independent model into a structure dependent 
model This demonstrates the feasibility of the method, even 

for using human voices for the structure-independent statis- 
tical model. 

System Specific Training Data 

In another example set of embodiments, the frequency 
spectrum is warped and the number of cepstral coefficients 

representing the spectrum are modified from those items 
used in standard speaker recognition. In some embodiments, 

the modifications are manual and in some embodiments the 
modifications are done dynamically based on any available 

training set or sets. 

In standard speaker recognition approaches, a melody 
frequency model is imposed on cepstral coefficients and 

termed Mel-Frequency Cepstral Coefficients (MFCC), and 
used as features of the voice data. Such MFCC have also 

been used for an active test of a bridge deck in G. Zhang, R. 
S. Harichandran, P. Ramuhalli, “Application of noise can- 

celling and damage detection algorithms in NDE of concrete 

bridge decks using impact signals,” Journal of Nondestruc- 
tive Evaluation v30 (4) pp 259-272, 2011 (hereinafter 

Zhang). Zhang used MFCCs to detect concrete delamination 
on a bridge deck by analyzing the MFCCs extracted from 

acoustic records of the impact sound produced by impacting 
the surface of the concrete slab with a steel bar. Sub-acoustic 

vibration data was not analyzed. 

In the approach described in this set of embodiments, 
vibration data below acoustic frequencies is used; the fre- 

quency warping is modified and the number of coefficients
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retained are modified from standard speaker recognition 

methods; and, in addition, a damage threshold is determined 

automatically, all based on passive training data for a 

particular system in a healthy state. 

To understand the differences from elements of standard 

speaker recognition methods, those standard elements are 

described next. FIG. 4A is a flow diagram that illustrates a 

method to compute the cepstral coefficients for voice data. 

The procedure to extract the Mel-Frequency Cepstral Coef- 

ficients from a sampled signal x[n] of N data points is 

outlined {n=0, . .. , N-1). The first operation, in step 401, 

segments of the training data signal into frames of length K, 

where K<<N. The frames are short enough to be considered 

stationary. Subsequently, in step 403, non-rectangular win- 

dows are applied to each frame in order to reduce riddle 

effects at the onset and offset of the frame spectra. Typically, 

the Hamming window is used for this purpose. Equation 2 

shows the expression for w[k], the kth coefficient of a 

K-point Hamming window, 

Qak (2) 
wlk] = 0.54- 0.46 cos] fork =0,...,K-1 

where K is the number of data points in each frame. 

Once the power spectrum of each frame is evaluated, by 
the use of Discrete Fourier Transform (DFT) in step 405, an 

operation known as frequency warping is performed in step 
407 to emphasize the properties of the signal in the Melody- 

frequency (Mel-Frequency) scale (Mel-scale). The Mel- 
scale is apt to represent sound pitch as perceived by the 

human ear. The relation between transformed Mel-Fre- 

quency, f,,.;, and linear frequency, f, is given by Equation 3. 

3) f 
futet = 1000 log, + am 

The Mel and the linear frequency scales are almost equiva- 
lent up to 1000 Hz, after which their relation becomes 

logarithmic. 

Frequency warping is achieved by grouping together the 
DFT spectral values into M critical bands and weighting 

each band by a triangular weighting function. The triangular 
filters are constructed such that their centers are equally 

spaced within the Mel-scale, each filter being symmetric 
with respect to its center on the linear frequency scale. FIG. 

4B is a graph that indicates triangular filters spaced equally 

in a warped frequency scale for speaker recognition. The 
horizontal axis indicates linear frequency in Hz, spanning 

the acoustic range; and, the vertical axis indicates filter 
amplitude relative to the peak value, dimensionless. The M 

bands, uniform in width and spacing on the f,,,, scale, 
increase width and spacing with frequency on the linear 

frequency scale. 

In step 409, the logarithm, base 2, of the amplitudes in 
each of the M bands is taken. Finally, in step 411, an 

L-points inverse Discrete Cosine Transform (DCT) is 
applied to the logarithm of the Mel spectra to complete the 

standard speaker features extraction procedure, yielding the 
cepstral coefficients c(1), 1=0,..., L-1, as given in Equation 

4. The number of cepstral coefficients can be different from 

that of the warped spectrum points. For example, in speaker 
recognition, a popular value of M is 24, while that for L is 

13. 
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M-1 n(2i + Lym 4) ell] = Onn Huet [meos] yy TM 

for /=0,...,L—-1 

where a,, is equal to 1/M, for m=0, and to 2/M otherwise. In 

Equation 4, H,,,,[m] represents the mth point of the Mel- 

spectrum, where m=0; ..., M-1, while c[]] is the Ith element 

of the feature vector ceR™*'. 
Often, the first MFCC is discarded, as it has been proved 

to be very sensitive to constant (direct current, DC) com- 
ponent effects. Furthermore, when the system is excited by 

random noise, input effects concentrate in the first part of the 
cepstrum representation of the signal. Therefore, discarding 

the first coefficient from the MFCC feature vector serves to 

reduce the effect of the input, especially when this is due to 
ambient acoustic noise. 

In the field of speaker recognition, the values assigned to 
the frequency warp (at 1000 Hz), number of bands M, and 

the number of coefficients L are standardized; so that a user 
can employ such values without any kind of parametric 

analysis. This is a very important characteristic of the 

approach for speaker recognition, as it reduces the factors of 
subjectivity in the extraction process. The features extracted 

from the same signal by two different users will take on the 
same values, leading to the same recognition results. 

There are aspects of the standard MSCC features that are 
useful for sub-acosutic vibration data. The framing and 

windowing operations are particularly appealing when deal- 

ing with non-stationary signals, as the case for a variety of 
structural response time histories. Indeed, when the moni- 

tored system is excited through a highly non-stationary 
input, as for instance in the case of storm or earthquake 

excitations, the response manifests non-stationarity charac- 
teristics in its transient part, the part that is often the only 

time history recorded for short-term structural health moni- 

toring (SHM) applications. 
Another interesting operation is represented by the use of 

inverse discrete cosine transform (DCT) in place of inverse 
Discrete Fourier Transform (DFT). DCT was shown to 

perform better than DFT in transforming the original data 
into more compact and almost uncorrelated representations, 

and was proved to compare closely to the Karhunen-Loéve 

Transform (KLT), which is optimal for compressing data 
dimensionality. KLT is the most basic approach to perform 

Principal Component Analysis (PCA), which is concerned 
with transforming the original data by projecting them into 

a reduced dimension space, whose basis vectors are repre- 

sented by the data covariance eigenvectors associated with 
the largest eigenvalues, which, in turn, represent data com- 

ponents characterized by the greatest variance and are the 
most useful for recognition purposes. However, despite 

being optimum, there is no efficient algorithm able to 
implement KLT. In contrast, DCT may be implemented 

exploiting Fast Fourier Transform (FFT), in a highly com- 

putationally efficient fashion. 
Therefore, evaluating the DCT of a data sequence, e.g., In 

(Hy,-Am]) in Equation 4, above, is equivalent to giving a 
representation of the energy content of the signal. Thus 

cepstral coefficients characterized by low values are associ- 
ated with low energy content and may be discarded without 

significant loss of information. This discussion also shows 

how Mel-Frequency Cepstral Coefficients may actually be 
interpreted as warped frame spectra compacted into a space 

conveying all necessary energy information regarding the
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original data. Moreover, it also provides the necessary 
background to understand the criterion employed in this 

work to select the number L of coefficients to use, in order 

to solve the damage detection problem. 
The only operation of the standard MFCC computation 

that is questionable when applied to non-speech signals is 
the warping of the linear frequency scale into Mel-scale 

based on a 1000 Hz inflection point. Indeed, Melody scale 
was specifically coined to mimic the human perception of 

sound that is a natural phenomenon not easily relatable to 

structural response processes. Moreover, the bands and filter 
settings used in speaker recognition are standardized for 

signals sampled at 8-16 kilo Hertz (kHz, 1 kHz=10° Hz), 
which is used for much higher frequency rates than those 

typically employed to record the structural response. 
Nonetheless, some critical frequency bands can be also 

identified for signals typical of structural engineering appli- 

cations. Thus, in various embodiments, different frequency 
warping approaches are effected. For example, in some 

embodiments, multiple frequency warping scales are tried 
and selection is based on some performance criterion. Four 

example frequency transformations tried for vibration are 
given by Equations 5a through 5d, 

8 5 

f= (f5/8)loe,{ 1 + =) 2) 

4 Sb 
f= (fs/Aogs{ 1+ =) oP) 

fr =log(1 +f) (5c) 

fa=f (5d) 

where fs is the sampling frequency, e.g., about 10 to 20 Hz 

for many structural vibration data sets. For each of these 
frequency transformations, M bands were filtered with the 

triangular filters in the transformed frequency space. The 
value of M is as suggested in the literature and given by 

Equation 6, 

M=3 In(fs) (6) 

where In is the natural logarithm. The selected frequency 

transformation was based on performance criteria, as 
described next. 

To give examples of the performance criteria, for illus- 
trative purposes, assume that the monitored system is instru- 

mented with s sensors, and that n realizations of the response 
of the system, under different healthy conditions, are mea- 

sured from the available sensors. It is preferable that the n 

realizations be measured under different external conditions, 
so to account for a variety of operating conditions, but it is 

not necessary to employ all the data that will be used in the 
training phase. Indeed, the construction of the training 

data-base is a progressive operation, so that, at the beginning 
of the monitoring project, only few instances of the healthy 

structure may be available. In other words, the set of data 

used for the filter bank construction should be diverse, but 
does not need to include all the data that will be used to 

construct the training model. 
In one set of embodiments, the criterion proposed to select 

the frequency warping scale (f,, f,, f, or f,), and number of 
cepstral coefficients, L, is based on the concept that the 

number of non-zero singular values of a matrix gives the 

dimension of the principal component of the matrix itself. If 
the matrix subjected to singular value decomposition is the 

covariance matrix of the training features, then the number 
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of non-zero singular values is an indication of the dimension 

the features should have in order to be uncorrelated. It may 

be then conjectured that if the minimum of the singular 

values of the features covariance matrix is zero or very 

small, the dimension of the feature vector could be reduced 

without losing any accuracy. Consequently, comparing the 

minima of the singular values of features covariance matri- 

ces obtained using different number L of cepstral coefficients 

should indicate how many coefficients to use to have mini- 

mally correlated features. 

In these embodiments, the parameter selection criterion 

starts from the extraction of the cepstral coefficients of the 

training data for a given pair of frequency scale and number 

of cepstral coefficients values, henceforward referred to as 

{L, F}. Then, the sample covariance matrix of the feature 

population is estimated and subjected to singular value 

decomposition to obtain the minimum of such values. The 

procedure is repeated for as many {L, F} pairs as desired. 

The minima are then compared and the {L, F} combination 

associated with the minimum singular value exceeded by a 

predetermined amount of instances is selected as the pair to 

be used for the damage detection. In an example embodi- 

ment, the selected {L, F} pair is the one associated with the 

singular value minimum exceeded by 85% of the instances. 

In a simulation of a structure with 10 degrees of freedom, 

this criterion selected L=6 cepstral coefficients and fre- 

quency scale f,. It is interesting to observe that the selected 

pair of parameters produces a high accuracy value, at 100%. 

Other combinations would have produced the same accu- 

racy, implying that there is not a unique combination able to 

deliver optimum results. Indeed, the proposed criterion 

seeks to offer a means for delivering an educated guess as for 

which values to assign to parameters that otherwise would 

have to be picked randomly. 

In a different illustrated embodiment, some frequency 

bands are selected to correspond to parts of the response 

spectrum where sharp peaks appear, since those peaks 

contain important information regarding the energy content 

of the signal. Since the procedure for the proposed feature 

extraction in structural response signals will depart from the 

standard values used in speaker recognition, it will also be 

desirable to pose a criterion to select the number of coefti- 

cients, L, as well. Here, it is proposed that such criterion be 

based on the principle of PCA, exploiting the properties of 

DCT. 
At this point, the analysis of the spectrum of the reference 

structural response is used only to identify the area of the 

spectrum with the greatest energy content, and this can also 

be pursued by analyzing a reduced number of response 

instances. If 1 is the number of frames obtainable from one 

time history, at the end of this first stage n-s-] response 

windowed segments are available. Averaging the spectra of 

all such segments results in the generation of what is 

referenced hereinafter as an average spectrum. The average 

spectrum highlights the frequency range within which the 

greatest energy content is observable. 

The user is called to define an upper frequency boundary 

for the range of maximum energy concentration—a bound- 

ary that is called the cutoff frequency, and denoted fc. The 

objective of this procedure is that of emphasizing the parts 

of the spectrum that are more likely to be expressing the 

structural behavior. In this work, it is suggested that the 
centers of the M triangular filters be equally spaced on the 

transformed frequency scale, f,, given by Equation 6.
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The only input the user is requested to provide is the cutoff 

frequency f.. Nonetheless, this choice should be quite natu- 

ral and can be made automatic, as the averaging process and 

the use of all available sensors clearly highlight the spectrum 

regions of maximum energy content. 

FIG. 5A is a graph that illustrates an example selection of 
a cutoff frequency for adjusting cepstral coefficients for 

vibration data, according to an embodiment. The horizontal 
axis is linear frequency in Hertz; and the vertical axis 

indicates power spectrum amplitude in arbitrary units. The 
trace is a simulated spectrum using simulated data from a 10 

degrees of freedom (DOF) shear-type system excited at all 

DOFs by white Gaussian noise input. To obtain the average 
spectrum, the acceleration response measured under an 

undamaged baseline is considered. The number of bands, M, 
is set up according to the guidelines of Fraile et al. (2008), 

expressed above in Equation 6, in which fs is equal to 100 
Hz. FIG. 5A shows the location of the cutoff frequency f,, 

indicated by a vertical dashed line, which for this case is 20 

Hz. By setting a cutoff frequency at the boundary of the 
greatest energy content of the spectrum, and forcing the 

filters to be linearly spaced within this range, the part of 
spectrum most representative of the structural response is 

more heavily weighted than the remaining part of the 
spectrum; thus, emphasizing the characteristics of the struc- 

ture. FIG. 5B is a graph that illustrates example triangular 

filters spaced equally in an example warped frequency scale 
based on cutoff frequency for vibration data, according to an 

embodiment. The horizontal axis indicates linear frequency 
in Hz, spanning the sub-acoustic vibrational frequency 

range; and, the vertical axis indicates filter amplitude rela- 

tive to the peak value, dimensionless. 
As already discussed, another important step in the fea- 

ture extraction procedure is to select the proper number of 
coefficients, L, that are advantageously extracted. In this 

different embodiment, a different approach is used than is 
described above. For an unsupervised approach, as done for 

the construction of the filter bank frequency warp, it is 

advantageous to exploit solely information contained in the 
training data. FIG. 6A is a flow diagram that illustrates an 

example method for determining a number L of cepstral 
coefficients to use in a damage sensitive feature, according 

to an embodiment. It is assumed that n realizations of the 
response time histories measured at s different locations, in 

multiple healthy (undamaged) conditions, are available. 

Such realizations will normally be the same realizations 
used to construct the average spectrum used above toe set 

the cutoff frequency fc. These time histories are obtained in 
step 601. 

In step 603, number of coefficients, L, is initialized to the 
number of bands, M. In step 605 the Cepstral coeflicients are 

extracted from such time histories. Such extraction proce- 

dure is performed following the algorithm shown in FIG. 
4A, but using the triangular filters constructed based on the 

cutoff frequency fe using Equation 7 and depicted in FIG. 
5A and FIG. 5B. From each time history, a frequency 

warped cepstral feature vector ceR”*! is obtained by aver- 
aging the | frame frequency warped cepstral vectors, where 

1 again refers to the number of frames in which each time 

history is segmented. During step 605, the first coefficient 
from each frequency warped cepstral feature vector is dis- 

carded, as in the standard processing. 
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At the end of step 605, s-n realizations of time warped 

cepstral feature vectors are available. In step 607, the time 

warped cepstral feature vectors are ensemble averaged to 

form a single vector ceR&"'™*". 
To determine the final value of L, the number of elements 

of ¢ covering 99 percent of the sequence energy is estimated 
in steps 609 through 621, according to the method proposed 

in Jain (1989). In step 609, Gc, the (L-1) point DCT of c is 
evaluated. In step 611, the absolute values of the compo- 

nents of Ge are evaluated, and the resulting values sorted in 

ascending order to form a vector, yeR@~*". The Euclidean 
norm of that vector |ly|| is also computed instep 611. The ratio 

between the Euclidean norm |lyil| of a vector y,, which is a 
vector of zeros with the first 1 elements replaced by the first 

i elements of y, and the Euclidean norm |ly|| of the vector y 
is iteratively computed in step 615 in a loop formed by steps 

613, 615 and 619. In step 613 1 is initialized to 1. In step 615, 

the norm |lyil| is computed. In step 617, the ratio |lyil|/|ly|| s 
computed and compared to a target energy fraction. In the 

illustrated example the target energy fraction is 0.99, but in 
other embodiments, other values are used. It is anticipated 

that any fraction greater than about 0.9 gives a satisfactory 
result. In step 619, the value of i is incremented. The loop 

continues until the ratio of the two norms exceeds the target 

energy fraction of 0.99, or until i becomes equal to M-1. In 
step 621, the last value assumed by i, increased by one unit, 

is selected as the new value for L. 
FIG. 6B is a graph that illustrates example dependence of 

energy in a sequence of cepstral coefficients compared to 
total energy for determining the number L, according to an 

embodiment. The horizontal axis indicates the index i that 

indicates the number of magnitude ordered cepstral coefli- 
cients retained; and is dimensionless, The vertical axis 

indicates |lyil|/|ly||, the fraction of the total energy in the 
sequences accounted for by the first 1 coefficients; and, is 

also dimensionless. FIG. 6B is a graphical representation of 

the final step involved in the selection of L. To obtain such 
a graph, 40 realizations were used of an acceleration 

response measured at the mid-span of each floor of a 
base-excited three story steel frame used in an experimental 

setup described below with reference to FIG. 9A and FIG. 
9B. The ratio |lyil|/|ly|| becomes greater than 0.99 for i equal 

to 11, and so the number of cepstral coeflicients selected is 

finally set to 12. In this work a threshold of 99% is used, but 
other experiments conducted demonstrated that any value in 

the range of about 90% to about 100% would not affect the 
results substantially. Thus, the proposed value of 99% can be 

used without further time consuming parametric analysis. 
The operations in this illustrated embodiment for the 

definition of the filters bank and of the number of cepstral 

coefficients are run only once at the beginning of the training 
phase. For both operations, efficient algorithms may be set, 

reducing the computational requirements to minimum lev- 
els. Indeed, the computational requirement for the extraction 

of cepstral coefficients is lower than that needed for com- 
puting autoregression (AR) coefficients. The only parameter 

the user is asked to select, in this embodiment, is the cutoff 

frequency f., but the decision is dramatically facilitated by 
the analysis of the average spectrum. The choice of discard- 

ing higher order cepstral coefficients would not introduce a 
substantial loss of important information, if the technique 

proposed in this study is employed, as the number of 
coefficients is selected to preserve 90% or more of the 

energy content of the signal. Additionally, the use of DCT 

assures that the last coefficients are indeed the least useful 
for recognition purposes, as they can be assimilated to the 

last components obtained by PCA of the warped log-spectra.
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Having determined the damage sensitive feature for this 

embodiments, which is the most significant time warped 

cepstral coefficients, it is now shown how to determine 

whether damage is indicated by the feature. The common 
scheme is that of constructing a model of the damage 

sensitive features representative of the healthy states and 
then comparing new instances of features extracted from the 

response of the system under unknown conditions against 
those representative of the original trained model. The 

comparison is made to determine whether these new 

instances are novel, e.g., deviating from the reference model, 
or are instead new realizations of the healthy (undamaged) 

system. 

The training model is usually represented by a probability 

density function estimated using the trained features. In the 
illustrated embodiment, the time-warped cepstral features 

(and AR coefficients) are assumed to be multi-variate and 

normally distributed. This assumption is not far from reality, 
especially when the number of training data is large. In fact, 

for what concerns cepstral coefficients normality, due to the 
optimal de-correlation properties of inverse DCT, the cep- 

stral coefficients may be considered to be almost uncorre- 
lated, as far as allowed by the use of noisy data. In addition, 

since the time-warped cepstral vectors are obtained through 

the same operations, it is reasonable to assume that they are 
identically distributed. It is well known that a set of n 

independent identically distributed (.id.) vectors will 
approach a normal distribution as the limit of n approaches 

large values. Proofs that AR-coefficients are normally dis- 
tributed are well documented. Therefore, estimating the 

mean vector and the covariance matrix of the ensemble of 

training feature vectors is enough to characterize the distri- 
bution of both types of coefficients. 

Tn an illustrated embodiment, the Squared Mahalanobis 
Distance (SMD) is used as the damage index. The 

Mahalanobis distance is used to identify and gauge similar- 

ity of an unknown sample set to a known one. It differs from 
Euclidean distance in that it takes into account the correla- 

tions of the data set and is scale-invariant. The squared 
Mahalanobis distance of a d-dimensional point, x, from a 

population characterized by mean, 11, and covariance matrix, 
=, is a scalar given by Equation 8. 

D@=@-py =p) (8) 

One advantage of employing SMD is the use of the 

sample covariance matrix, estimated using samples mea- 
sured under different external conditions, e.g. temperature, 

traffic, wind in a bridge structure. This accounts for the 
feature variability in a healthy structure produced by the 

effects of such factors. Another advantage is that SMD is the 

preferred metric in the field of outlier detection, such that a 
substantial body of work is available on the subject. The 

knowledge of the damage index distribution is advantageous 
for defining a threshold that is able to robustly distinguish 

between undamaged and damaged instances. 
The squared Mahalanobis distance of normally distrib- 

uted instances is asymptotically y7-distributed with d 

degrees of freedom, where d is the dimension of the feature 
vector. However, the asymptotic convergence is very slow, 

and defining the threshold based on the y? quantiles may be 
too conservative in some embodiments, even for large 

samples. Also, the y7-distribution of SMD is true when the 
true mean and covariance matrix of the feature population 

are employed. In the illustrated embodiment, the sample 

estimators of the mean and covariance matrix are used. The 
distribution of the SMD of a d-variate point x, when x is not 

involved in the estimation of the sample mean and the 
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sample covariance matrix, follows a scaled F-distribution 

with degrees of freedom d and n-d, where d is the dimension 

of x, and n is the number of observations used to construct 

the sample statistics’ estimators. As detailed below, this 

property is used to set the threshold value in some embodi- 

ments. 

FIG. 7A through FIG. 7C are portions of a flow diagram 
that illustrates an example method for determining and using 

a damage threshold for the damage sensitive feature, accord- 
ing to an embodiment. The steps of FIG. 7A are performed 

during processing of a training set. The steps of FIG. 7B and 

FIG. 7C are performed with subsequently collected data, 
called test data, during a testing phase. 

In step 701, the training data is obtained. It is assumed 
that, for the training phase, n,. sets of structural response 

time histories are available from each of the s sensors 
located on the monitored system. During step 703, prior to 

engaging into the feature extraction process, a subset of the 

n,, realizations, previously referred to as n, is selected to 
determine cutoff frequency fc and construct the filter bank 

using transformed frequency f, from Equation 7. Then, the 
method of FIG. 6A is run to select the number of cepstral 

coefficients, L. 

At this point, retrieving all the training set data in step 
711, the time warped cepstral feature vectors can be 

extracted from each of the n,s time histories during step 
713. Each response time series of the ith data set realization 

is divided into 1 frames, and from each frame a (L-1)x1 
feature vector is derived. As previously explained, the first 

cepstral coefficient is discarded to mitigate input effects. 

In step 715, the sample mean of the | feature vectors is 
stored and concatenated to the other s—1 mean feature 

vectors, generating a feature vector ceR°%"'™!, for 
i=l, ...n,,. The training model is then constituted by the set 

of n,. feature vectors c, for i=1,..., n,, whose sample 
mean is given by Equation 9 and unbiased sample covari- 

ance matrix is given by equation 10 to form the training 

model. 

9) 

1 Nt 

DS CO = may (c= my) o) 
i=l 

Sy = 
Ny -14 

It is further assumed that a test set of n,, data sets are 

available for testing. These are data sets for which the 

condition of the structure is unknown and are used to assess 
whether or not changes have occurred in the structure. In 

step 721 of FIG. 7B, the test set is obtained or retrieved. In 
the case of short-term applications, n,, can be equal to 1 but, 

in general, it is assumed that n,=1. 
In step 723, from each data set of the test set, a feature 

vector eR*@"'™!, for j=1, ..., n,,, is extracted, in order 

to get a population of n,, feature vectors based on the most 
significant, time warped, cepstral coefficients. In step 725, 

the mean feature vector in the test set is computed using 
Equation 11, analogous to Equation 9. 

1 Te (11) 

MNte = — 
The 

a 

fl



US 9,495,646 B2 

17 
In step 727, the squared Mahalanobis distance between 

training model and test set is estimated according to Equa- 

tion 12, analogous to Equation 8. 

PP) M yy Sy (tye My) (12) 

In step 731 of FIG. 7C, the damage index D?(m,,) is 

compared against a threshold, I, in order to assess the 

occurrence of damage. A value for I is estimated based on 
the training set in step 717 of FIG. 7A. 

As previously stated, the squared Mahalanobis distance of 
the testing point m,,.eR*@""" from the training population, 
whose sample mean vector, m,,, and the sample covariance 
matrix, S,,, have been estimated using n,, data points, but 

without using the point m,,, is distributed according to a 

scaled F-distribution with degrees of freedom s-(L—-1) and 
n,-S‘(L-1), as given by Equation 13, 

Nyy — a) 

(i — Dd 
(13) 

D? (te) ~ Fat ng-d 

where d is equal to s-(L-1). 
The threshold, I’, is then set to the value of the (1-a)- 

quantile of Fd,n,—-d, in step 717 of FIG. 7A. In an illustrated 
embodiment, « is set equal to 1 percent. 

For each test, the value of D?(m,,), scaled by n,(n,-d)/ 
(n?,,-1)d can then be compared to T in step 731, as given in 

inequality expressed in Equation 14. 

Ny (My — a) (14) 

(nj. — Id 
De) <T 

If it exceeds the threshold value, then the structure is 

determined to be damaged in step 735. If not, then the 

structure is determined to be healthy in step 733. 
Two case studies are considered, in order to analyze the 

performance of the proposed damage detection algorithm in 
the embodiment illustrated in FIG. 7A through FIG. 7C. The 

first case study exploits the acceleration response time 
histories simulated from a 10 DOFs shear-type system. In 

the second case study, the acceleration response time histo- 

ries recorded on the 3-story scaled building model available 
at the Engineering Institute of the Los Alamos National 

Laboratory are used to solve the damage detection problem. 
The results obtained from this second case are particularly 

important, as the mechanism employed to model damage on 
the frame leads the system to behave nonlinearly. 

FIG. 8 is a diagram that illustrates an example simulation 

for testing the method of FIG. 7A through FIG. 7C, accord- 
ing to an embodiment. The simulated system tested to 

demonstrate the proposed method is a 10-story shear-type 
system, modeled according to the common mass-spring- 

viscous damper chain. The nodes are numbered in ascending 
order, so that the node closest to the constraint is labeled as 

1. The inter-story stiffness between the (ith-1) node and the 

ith node is denoted as ki and the damping by Ci. The mass 
of the ith floor is denoted by mi. The energy dissipation 

properties of the system were modeled through the Rayleigh 
damping mechanism. 

The performances of the two damage sensitive features 
(based on frequency warped cepstral coefficients and AR 

coefficients, respectively) are comparable, although the cep- 

stral coefficients perform slightly better than the AR coef- 
ficients when sensors are not located in the immediate 

proximity of the damage. Of particular interest are the 
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results obtained from a damage state that corresponds to a 10 
percent reduction of the stiffness of the first element. When 

using the third sensor setup, state D4 is the most difficult to 

be correctly identified for both damage sensitive features. 
When using cepstral coefficients the majority of the dam- 

aged instances are declared damaged. However, only a 
minimum part of such instances are correctly declared as 

damaged when the AR coefficients are employed. This 
suggests that both types of coefficients perform better when 

there is a sensor in the proximity of the damage. In fact, the 

third sensor setup does not include any sensor in the prox- 
imity of the first degree of freedom. It is also interesting to 

note that the damage index magnitude is higher for damage 
cases that are characterized by a 15 percent decrease of 

inter-story stiffness, while it decreases for cases with 10 
percent reduction, indicating proportionality between the 

amplitude of cepstral features and the damage severity. 

FIG. 9A and FIG. 9B are diagrams that illustrate an 
experimental setup from which data is used for testing the 

method of FIG. 7A through FIG. 7C, according to an 
embodiment. The structure is a laboratory three-story frame 

whose schematic and sensor locations are shown. Damage is 
modeled through a mechanism made up of a bumper and a 

column. The column hangs from the third floor and may hit 

a bumper, anchored at the second floor, and whose distance 
from the column’s tip is adjustable. The further the bumper 

from the column’s tip, the milder the damage. This kind of 
mechanism aims to mimic opening/closing crack behavior 

due to dynamic loads. See, E. Figueiredo, G. P. J. Figueiras, 
C. R. Farrar and K. Worden (2009). Structural Health 

Monitoring algorithm comparisons using standard data sets, 

Los Alamos National Laboratory Report, LA-14393; and E. 
Figueiredo, G. Park, C. R. Farrar, K. Worden and J. Figuei- 

ras (2011). Machine learning algorithms of damage detec- 
tion under operational and environmental variability. Struc- 

tural Health Monitoring 10(6), 559-572. 

Load is applied by means of an electrodynamic shaker to 
the base floor along the center line of the frame. The system 

is instrumented with four accelerometers mounted at the 
center line of each floor on the opposite side of the excitation 

source. Sensors and shaker locations, together with the use 
of linear bearings on which the frame slides during the 

excitation, work together to minimize the occurrence of 

torsional effects in the system. Signals are sampled at 320 
Hz for 25.6 s in duration. The input time history is a 

band-limited excitation in the range of 20-150 Hz applied at 
the base. The input spectrum band was used to prevent the 

excitation of the rigid body motions triggered at frequencies 
lower than 20 Hz. The acceleration response time histories 

at all floors, including the first floor, and the input excitation 

are measured. 
For identification of the damaged states, it is noteworthy 

that both kinds of damage sensitive features prove to be 
particularly sensitive to impact-like damages. The damage 

index magnitude for a damaged structure is now much 
higher than that for an undamaged structure, so that the 

outcomes obtained running the tests on damaged states must 

be plotted on a scale different from that used to display the 
results from the undamaged cases. Once again, as observed 

in the simulated embodiment, the values of the damage 
indexes increase proportionally to the increase of the dam- 

age severity, hence indicating sensitivity to damage severity 
for the experimental embodiment, as well. 

Comparing the properties of cepstral features with those 

of the AR coefficients, the parameters of the illustrated 
embodiment are generally more compact and require lower 

computational effort than the AR coefficients, making the



US 9,495,646 B2 

19 
model more robust to environmental factors. More impor- 
tantly, the results show that cepstral coefficients are less 

sensitive to environmental and operational variability in the 

training data than AR coefficients. Moreover, the false 
acceptance rate of cepstral coefficients is quite low, never 

exceeding 5 percent, for the embodiments considered. The 
use of experimental data measured on a system where 

damage is not modeled through the conventional stiffness 
reduction approach suggests that the proposed procedure is 

well suited for real-life applications 

Hardware Overview 
FIG. 10 is a block diagram that illustrates a computer 

system 1000 upon which an embodiment of the invention 
may be implemented. Computer system 1000 includes a 

communication mechanism such as a bus 1010 for passing 
information between other internal and external components 

of the computer system 1000. Information is represented as 

physical signals of a measurable phenomenon, typically 
electric voltages, but including, in other embodiments, such 

phenomena as magnetic, electromagnetic, pressure, chemi- 
cal, molecular atomic and quantum interactions. For 

example, north and south magnetic fields, or a zero and 
non-zero electric voltage, represent two states (0, 1) of a 

binary digit (bit).). Other phenomena can represent digits of 

a higher base. A superposition of multiple simultaneous 
quantum states before measurement represents a quantum 

bit (qubit). A sequence of one or more digits constitutes 
digital data that is used to represent a number or code for a 

character. In some embodiments, information called analog 
data is represented by a near continuum of measurable 

values within a particular range. Computer system 1000, or 

a portion thereof, constitutes a means for performing one or 
more steps of one or more methods described herein. 

Asequence of binary digits constitutes digital data that is 
used to represent a number or code for a character. A bus 

1010 includes many parallel conductors of information so 

that information is transferred quickly among devices 
coupled to the bus 1010. One or more processors 1002 for 

processing information are coupled with the bus 1010. A 
processor 1002 performs a set of operations on information. 

The set of operations include bringing information in from 
the bus 1010 and placing information on the bus 1010. The 

set of operations also typically include comparing two or 

more units of information, shifting positions of units of 
information, and combining two or more units of informa- 

tion, such as by addition or multiplication. A sequence of 
operations to be executed by the processor 1002 constitutes 

computer instructions. 
Computer system 1000 also includes a memory 1004 

coupled to bus 1010. The memory 1004, such as a random 

access memory (RAM) or other dynamic storage device, 
stores information including computer instructions. 

Dynamic memory allows information stored therein to be 
changed by the computer system 1000. RAM allows a unit 

of information stored at a location called a memory address 
to be stored and retrieved independently of information at 

neighboring addresses. The memory 1004 is also used by the 

processor 1002 to store temporary values during execution 
of computer instructions. The computer system 1000 also 

includes a read only memory (ROM) 1006 or other static 
storage device coupled to the bus 1010 for storing static 

information, including instructions, that is not changed by 
the computer system 1000. Also coupled to bus 1010 is a 

non-volatile (persistent) storage device 1008, such as a 

magnetic disk or optical disk, for storing information, 
including instructions, that persists even when the computer 

system 1000 is turned off or otherwise loses power. 
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Information, including instructions, is provided to the bus 

1010 for use by the processor from an external input device 

1012, such as a keyboard containing alphanumeric keys 

operated by a human user, or a sensor. A sensor detects 
conditions in its vicinity and transforms those detections into 

signals compatible with the signals used to represent infor- 
mation in computer system 1000. Other external devices 

coupled to bus 1010, used primarily for interacting with 
humans, include a display device 1014, such as a cathode ray 

tube (CRT) or a liquid crystal display (LCD), for presenting 

images, and a pointing device 1016, such as a mouse or a 
trackball or cursor direction keys, for controlling a position 

of a small cursor image presented on the display 1014 and 
issuing commands associated with graphical elements pre- 

sented on the display 1014. 
In the illustrated embodiment, special purpose hardware, 

such as an application specific integrated circuit (IC) 1020, 

is coupled to bus 1010. The special purpose hardware is 
configured to perform operations not performed by proces- 

sor 1002 quickly enough for special purposes. Examples of 
application specific ICs include graphics accelerator cards 

for generating images for display 1014, cryptographic 
boards for encrypting and decrypting messages sent over a 

network, speech recognition, and interfaces to special exter- 

nal devices, such as robotic arms and medical scanning 
equipment that repeatedly perform some complex sequence 

of operations that are more efficiently implemented in hard- 
ware. 

Computer system 1000 also includes one or more 
instances of a communications interface 1070 coupled to bus 

1010. Communication interface 1070 provides a two-way 

communication coupling to a variety of external devices that 
operate with their own processors, such as printers, scanners 

and external disks. In general the coupling is with a network 
link 1078 that is connected to a local network 1080 to which 

a variety of external devices with their own processors are 

connected. For example, communication interface 1070 may 
be a parallel port or a serial port or a universal serial bus 

(USB) port on a personal computer. In some embodiments, 
communications interface 1070 is an integrated services 

digital network (SDN) card or a digital subscriber line 
(DSL) card or a telephone modem that provides an infor- 

mation communication connection to a corresponding type 

of telephone line. In some embodiments, a communication 
interface 1070 is a cable modem that converts signals on bus 

1010 into signals for a communication connection over a 
coaxial cable or into optical signals for a communication 

connection over a fiber optic cable. As another example, 
communications interface 1070 may be a local area network 

(LAN) card to provide a data communication connection to 

a compatible LAN, such as Ethernet. Wireless links may 
also be implemented. Carrier waves, such as acoustic waves 

and electromagnetic waves, including radio, optical and 
infrared waves travel through space without wires or cables. 

Signals include man-made variations in amplitude, fre- 
quency, phase, polarization or other physical properties of 

carrier waves. For wireless links, the communications inter- 

face 1070 sends and receives electrical, acoustic or electro- 
magnetic signals, including infrared and optical signals, that 

carry information streams, such as digital data. 
The term computer-readable medium is used herein to 

refer to any medium that participates in providing informa- 
tion to processor 1002, including instructions for execution. 

Such a medium may take many forms, including, but not 

limited to, non-volatile media, volatile media and transmis- 
sion media. Non-volatile media include, for example, optical 

or magnetic disks, such as storage device 1008. Volatile
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media include, for example, dynamic memory 1004. Trans- 
mission media include, for example, coaxial cables, copper 

wire, fiber optic cables, and waves that travel through space 

without wires or cables, such as acoustic waves and elec- 
tromagnetic waves, including radio, optical and infrared 

waves. The term computer-readable storage medium is used 
herein to refer to any medium that participates in providing 

information to processor 1002, except for transmission 
media. 

Common forms of computer-readable media include, for 

example, a floppy disk, a flexible disk, a hard disk, a 
magnetic tape, or any other magnetic medium, a compact 

disk ROM (CD-ROM), a digital video disk (DVD) or any 
other optical medium, punch cards, paper tape, or any other 

physical medium with patterns of holes, a RAM, a program- 
mable ROM (PROM), an erasable PROM (EPROM), a 

FLASH-EPROM, or any other memory chip or cartridge, a 

carrier wave, or any other medium from which a computer 
can read. The term non-transitory computer-readable storage 

medium is used herein to refer to any medium that partici- 
pates in providing information to processor 1002, except for 

carrier waves and other signals. 
Logic encoded in one or more tangible media includes 

one or both of processor instructions on a computer-readable 

storage media and special purpose hardware, such as ASIC 
1020. 

Network link 1078 typically provides information com- 
munication through one or more networks to other devices 

that use or process the information. For example, network 
link 1078 may provide a connection through local network 

1080 to a host computer 1082 or to equipment 1084 operated 

by an Internet Service Provider (ISP). ISP equipment 1084 
in turn provides data communication services through the 

public, world-wide packet-switching communication net- 
work of networks now commonly referred to as the Internet 

1090. A computer called a server 1092 connected to the 

Internet provides a service in response to information 
received over the Internet. For example, server 1092 pro- 

vides information representing video data for presentation at 
display 1014. 

The invention is related to the use of computer system 
1000 for implementing the techniques described herein. 

According to one embodiment of the invention, those tech- 

niques are performed by computer system 1000 in response 
to processor 1002 executing one or more sequences of one 

or more instructions contained in memory 1004. Such 
instructions, also called software and program code, may be 

read into memory 1004 from another computer-readable 
medium such as storage device 1008. Execution of the 

sequences of instructions contained in memory 1004 causes 

processor 1002 to perform the method steps described 
herein. In alternative embodiments, hardware, such as appli- 

cation specific integrated circuit 1020, may be used in place 
of or in combination with software to implement the inven- 

tion. Thus, embodiments of the invention are not limited to 
any specific combination of hardware and software. 

The signals transmitted over network link 1078 and other 

networks through communications interface 1070, carry 
information to and from computer system 1000. Computer 

system 1000 can send and receive information, including 
program code, through the networks 1080, 1090 among 

others, through network link 1078 and communications 
interface 1070. In an example using the Internet 1090, a 

server 1092 transmits program code for a particular appli- 

cation, requested by a message sent from computer 1000, 
through Internet 1090, ISP equipment 1084, local network 

1080 and communications interface 1070. The received 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

22 
code may be executed by processor 1002 as it is received, or 

may be stored in storage device 1008 or other non-volatile 

storage for later execution, or both. In this manner, computer 

system 1000 may obtain application program code in the 

form of a signal on a carrier wave. 

Various forms of computer readable media may be 

involved in carrying one or more sequence of instructions or 

data or both to processor 1002 for execution. For example, 

instructions and data may initially be carried on a magnetic 

disk of a remote computer such as host 1082. The remote 

computer loads the instructions and data into its dynamic 

memory and sends the instructions and data over a telephone 

line using a modem. A modem local to the computer system 

1000 receives the instructions and data on a telephone line 

and uses an infra-red transmitter to convert the instructions 

and data to a signal on an infra-red carrier wave serving as 

the network link 1078. An infrared detector serving as 

communications interface 1070 receives the instructions and 

data carried in the infrared signal and places information 

representing the instructions and data onto bus 1010. Bus 

1010 carries the information to memory 1004 from which 
processor 1002 retrieves and executes the instructions using 

some of the data sent with the instructions. The instructions 

and data received in memory 1004 may optionally be stored 
on storage device 1008, either before or after execution by 

the processor 1002. 
FIG. 11 illustrates a chip set 1100 upon which an embodi- 

ment of the invention may be implemented. Chip set 1100 is 
programmed to perform one or more steps of a method 

described herein and includes, for instance, the processor 

and memory components described with respect to FIG. 10 
incorporated in one or more physical packages (e.g., chips). 

By way of example, a physical package includes an arrange- 
ment of one or more materials, components, and/or wires on 

a structural assembly (e.g., a baseboard) to provide one or 

more characteristics such as physical strength, conservation 
of size, and/or limitation of electrical interaction. It is 

contemplated that in certain embodiments the chip set can be 
implemented in a single chip. Chip set 1100, or a portion 

thereof, constitutes a means for performing one or more 
steps of a method described herein. 

In one embodiment, the chip set 1100 includes a commu- 

nication mechanism such as a bus 1101 for passing infor- 
mation among the components of the chip set 1100. A 

processor 1103 has connectivity to the bus 1101 to execute 
instructions and process information stored in, for example, 

a memory 1105. The processor 1103 may include one or 
more processing cores with each core configured to perform 

independently. A multi-core processor enables multiprocess- 

ing within a single physical package. Examples of a multi- 
core processor include two, four, eight, or greater numbers 

of processing cores. Alternatively or in addition, the pro- 
cessor 1103 may include one or more microprocessors 

configured in tandem via the bus 1101 to enable independent 
execution of instructions, pipelining, and multithreading. 

The processor 1103 may also be accompanied with one or 

more specialized components to perform certain processing 
functions and tasks such as one or more digital signal 

processors (DSP) 1107, or one or more application-specific 
integrated circuits (ASIC) 1109. A DSP 1107 typically is 

configured to process real-world signals (e.g., sound) in real 
time independently of the processor 1103. Similarly, an 

ASIC 1109 can be configured to performed specialized 

functions not easily performed by a general purposed pro- 
cessor. Other specialized components to aid in performing 

the inventive functions described herein include one or more



US 9,495,646 B2 

23 
field programmable gate arrays (FPGA) (not shown), one or 
more controllers (not shown), or one or more other special- 

purpose computer chips. 

The processor 1103 and accompanying components have 
connectivity to the memory 1105 via the bus 1101. The 

memory 1105 includes both dynamic memory (e.g., RAM, 
magnetic disk, writable optical disk, etc.) and static memory 

(e.g., ROM, CD-ROM, etc.) for storing executable instruc- 
tions that when executed perform one or more steps of a 

method described herein. The memory 1105 also stores the 

data associated with or generated by the execution of one or 
more steps of the methods described herein. 

In the foregoing specification, the invention has been 
described with reference to specific embodiments thereof. It 

will, however, be evident that various modifications and 
changes may be made thereto without departing from the 

broader spirit and scope of the invention. The specification 

and drawings are, accordingly, to be regarded in an illus- 
trative rather than a restrictive sense. Throughout this speci- 

fication and the claims, unless the context requires other- 
wise, the word “comprise” and its variations, such as 

“comprises” and “comprising,” will be understood to imply 
the inclusion of a stated item, element or step or group of 

items, elements or steps but not the exclusion of any other 

item, element or step or group of items. elements or steps. 
Furthermore, the indefinite article “a” or “an” is meant to 

indicate one or more of the item, element or step modified 
by the article. 

What is claimed is: 

1. A method comprising: 

determining a system-independent statistical model; 
determining a healthy system model based on data rep- 

resenting vibrations of multiple healthy dynamic sys- 
tems and the system-independent statistical model and 

speaker recognition techniques; 

obtaining vibration data from a particular dynamic sys- 
tem; and 

determining whether the particular dynamic system is 
healthy based on the vibration data from the particular 

dynamic system and the system-independent statistical 
model and the healthy system model and speaker 

recognition techniques. 

2. A method as recited in claim 1, wherein: 
determining the system-independent statistical model 

comprises further determining the system-independent 
statistical model based on a speaker-independent sta- 

tistical model of human voices; and 
determining the healthy system model further comprises 

determining the healthy system model based on data 

representing vibrations of multiple healthy dynamic 
systems transformed in frequency to a frequency band 

of human voices. 
3. A method as recited in claim 2, wherein determining 

whether the particular dynamic system is healthy further 
comprises determining whether the particular dynamic sys- 

tem is healthy based on the vibration data from the particular 

dynamic system transformed in frequency to a frequency 
band of human voices. 

4. A method as recited in claim 1, wherein the dynamic 
system is an architectural structure. 

5. A method as recited in claim 1, wherein the dynamic 
system is vibrating machinery. 

6. An apparatus comprising: 

at least one processor; and 
at least one memory including one or more sequences of 

instructions, 
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the at least one memory and the one or more sequences of 

instructions configured to, with the at least one proces- 

sor, cause the apparatus to perform at least the follow- 

ing, 
determine a system-independent statistical model; 

determine an healthy system model based on data repre- 

senting vibrations of multiple healthy dynamic systems 

and the system-independent statistical model and 

speaker recognition techniques; 

obtain vibration data from a particular dynamic system; 

and 

determine whether the particular dynamic system is 

healthy based on the vibration data from the particular 

dynamic system and the system-independent statistical 

model and the healthy system model and speaker 

recognition techniques. 

7. A non-transitory computer-readable medium carrying 

one or more sequences of instructions, wherein execution of 

the one or more sequences of instructions by one or more 

processors causes an apparatus to perform the steps of: 

determining a system-independent statistical model; 
determining an healthy system model based on data 

representing vibrations of multiple healthy dynamic 

systems and the system-independent statistical model 
and speaker recognition techniques; 

obtaining vibration data from a particular dynamic sys- 
tem; and 

determining whether the particular dynamic system is 
healthy based on the vibration data from the particular 

dynamic system and the system-independent statistical 

model and the healthy system model and speaker 
recognition techniques. 

8. A method comprising: 
obtaining training data that represents vibrations of a 

healthy dynamic system under a plurality of conditions; 

determining a damage sensitive parameter based on the 
training data by warping a frequency scale of the 

training data; 
determining a threshold value that separates damaged 

dynamic systems from healthy dynamic systems based 
on the training data and the damage sensitive param- 

eter; 

obtaining vibration data from a particular dynamic sys- 
tem; and 

determining whether a particular dynamic system is 
healthy based on the threshold value and a value for the 

damage sensitive parameter for the vibration data from 
the particular dynamic system. 

9. A method as recited in claim 8, wherein determining the 

damage sensitive parameter further comprises: 
warping the frequency scale according to each of a 

plurality of warping functions; 
for each warping function determine a minimum non-zero 

singular value for each covariance matrix based on a 
corresponding one of a plurality of number of cepstral 

coefficients; 

selecting as the damage sensitive parameter a particular 
number of cepstral coefficients for a particular warping 

function that together yield a minimum singular value 
exceeded by the minimum singular value of most of the 

other combinations of warping functions and number of 
cepstral coefficients. 

10. A method as recited in claim 9, wherein most of the 

other combinations of warping functions and number of 
cepstral coefficients is about 85% of the other combinations 

of warping functions and number of cepstral coefficients.



US 9,495,646 B2 

25 
11. A method as recited in claim 8, wherein determining 

the threshold value further comprises: 

determining for each condition of the plurality of condi- 

tions in the training data, a distance between a value of 

the damage sensitive parameter for that condition to a 

mean value of the damage sensitive parameter for all 

other conditions of the plurality of conditions in the 

training data; and 

selecting the threshold value that is exceeded by a small 

percentage of the plurality of conditions in the training 

set. 

12. A method as recited in claim 11, wherein the distance 

between the value of the damage sensitive parameter for that 

condition to the mean value is a squared Mahalanobis 

distance. 

13. A method as recited in claim 11, wherein the small 

percentage of the plurality of conditions in the training set is 

in a range from about 1% to about 5%. 

14. A method as recited in claim 8, wherein the dynamic 

system is an architectural structure. 

15. A method as recited in claim 8, wherein the dynamic 

system is vibrating machinery. 

16. A method as recited in claim 8, wherein determining 

the damage sensitive parameter further comprises: 

warping the frequency f by applying a plurality of trian- 

gular filters centered at a corresponding plurality of 

increments of a transformed frequency f,, wherein 
f,=fc log,(1+f/fc), and 

fe is a cutoff frequency selected just above a highest 
frequency peak in a power spectrum from the train- 

ing set; and 

determining the damage sensitive parameter as a number 
L of cepstral coefficients for the spectrum on the 

transformed frequency scale. 
17. A method as recited in claim 16, wherein determining 

the damage sensitive parameter further comprises determin- 
ing the number L of cepstral coefficients that accounts for 

more than about 90% of energy in the power spectrum from 

the training set. 
18. A method as recited in claim 8, wherein the healthy 

dynamic system comprises a plurality of healthy dynamic 
systems. 
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19. A system comprising: 
at least one processor; and 
at least one memory including one or more sequences of 

instructions, 
the at least one memory and the one or more sequences of 

instructions configured to, with the at least one proces- 
sor, cause an apparatus to perform at least the follow- 

ing, 
obtaining training data that represents vibrations of a 

healthy dynamic system under a plurality of condi- 
tions; 

determining a damage sensitive parameter based on the 
training data by warping a frequency scale of the 
training data; 

determining a threshold value that separates damaged 
dynamic systems from healthy dynamic systems 
based on the training data and the damage sensitive 
parameter; 

obtaining vibration data from a particular dynamic 
system; and 

determining whether the particular dynamic system is 
healthy based on the threshold value and a value for 
the damage sensitive parameter for the vibration data 
from the particular dynamic system. 

20. A non-transitory computer-readable medium carrying 
one or more sequences of instructions, wherein execution of 

the one or more sequences of instructions by one or more 
processors causes an apparatus to perform the steps of: 

obtaining training data that represents vibrations of a 

healthy dynamic system under a plurality of conditions; 
determining a damage sensitive parameter based on the 

training data by warping a frequency scale of the 
training data; 

determining a threshold value that separates damaged 
dynamic systems from healthy dynamic systems based 

on the training data and the damage sensitive param- 

eter; 

obtaining vibration data from a particular dynamic sys- 

tem; and 
determining whether the particular dynamic system is 

healthy based on the threshold value and a value for the 
damage sensitive parameter for the vibration data from 

the particular dynamic system. 

* * * * *


