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Abstract
Punctuation restoration plays an essential role in the post-
processing procedure of automatic speech recognition,
but model efficiency is a key requirement for this task. To
that end, we present EfficientPunct, an ensemble method
with a multimodal time-delay neural network that out-
performs the current best model by 1.0 F1 points, using
less than a tenth of its parameters to process embeddings.
We streamline a speech recognizer to efficiently output
hidden layer latent vectors as acoustic embeddings for
punctuation restoration, as well as BERT to extract mean-
ingful text embeddings. By using forced alignment and
temporal convolutions, we eliminate the need for multi-
head attention-based fusion, greatly increasing computa-
tional efficiency but also raising performance. Efficient-
Punct sets a new state of the art, in terms of both per-
formance and efficiency, with an ensemble that weights
BERT’s purely language-based predictions slightly more
than the multimodal network’s predictions.
Index Terms: speech recognition, punctuation restora-
tion, multimodal learning

1. Introduction
Automatic speech recognition (ASR) systems’ transfor-
mation of audio into text opens up possibilities for a wide
range of downstream tasks. With natural language text,
applications like machine translation and voice assistants
are enabled. However, raw ASR outputs lack punctua-
tion and hence the full meaning of texts, which must be
restored for usage by the aforementioned tasks. To il-
lustrate the importance of punctuation, consider how the
meaning of the sentence, “I have a favorite, family,” dif-
fers drastically from the unpunctuated version, “I have a
favorite family.” Punctuation restoration is therefore also
important for readability of transcribed speech and accu-
racy of conveyed message.

Following the standard of the punctuation restora-
tion task, we focus on three key punctuation marks which
most commonly occur and play critical roles in language:
commas (,), full stops (.), and question marks (?). We also

consider no punctuation (NP) as a fourth class in need of
our model’s consideration.

1.1. Related work

Many works and proposed architectures have been de-
voted to restoring punctuation, and two main research
categories have emerged: (1) considering only text out-
put from ASR, and (2) considering both text output from
ASR and the original audio.

Most consider text only, effectively forming a nat-
ural language processing task. They usually train and
evaluate on the benchmark, textual datasets from IWSLT
2011 and 2012. Researchers have studied a wide variety
of methods, including n-gram models [1], recurrent neu-
ral networks [2, 3, 4], adversarial models [5], contrastive
learning [6], and transformers [7, 8]. Conditional random
fields [9, 10, 11, 12] had particularly notable success. Di-
rect fine-tuning of BERT [13] has also proven effective,
which we demonstrate in Section 4.1.

In the other category, both audio and text modali-
ties are considered. Earlier techniques involved statistical
models like finite state machines [14], but unsurprisingly,
more recently we see the exploration of neural networks
[15, 16] and re-purposing existing models to take audio-
based input and predict punctuation [17, 18]. Current
state of the art models begin in separate branches: one
to tokenize and process text and the other to process raw
audio waveforms. They then use the attention mechanism
[19] to fuse text and acoustic embeddings [20, 21].

1.2. Significance of multimodal approach

Despite research in multimodal punctuation restoration
being far less numerous than the text-only category, [17]
explicitly demonstrated the value of added acoustic infor-
mation. Intuitively, audio provides more diverse features
from which models may learn [22]. As a simple exam-
ple, long pauses in speech are definitive indicators of a
full stop’s (.) occurrence. Similarly, shorter pauses may
indicate a comma (,), and rising pitch is often associated
with question marks (?).
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The substantial benefit of involving both the tran-
scribed text and original speech audio is that, in practical
applications, we can design a highly streamlined system
for restoring punctuation. Speech can first be transcribed
into text by forward-passing audio signals through an
ASR network, but one may preserve a hidden layer’s la-
tent representation for further usage as input (along with
the transcribed text’s embeddings) to a separate punctu-
ation model. Then, the concatenated input would em-
bed not only textual information, but also acoustics and
prosody.

Our work is precisely motivated by this potential for
high-speed punctuation labeling after receiving ASR out-
put. We present EfficientPunct, a model that surpasses
state of the art performance while requiring far fewer pa-
rameters, enabling practical usage.

2. Method
We formulate the problem as follows. We are given
spoken audio signal a = (a1, a2, . . . , aS) and tran-
scription words t = (t1, t2, . . . , tW ). Here, S is the
number of samples in the audio, and W is the num-
ber of words. The goal is to predict punctuation labels
y = (y1, y2, . . . , yW ) that follow each word, where each
yi ∈ {",",".","?",NP}.

As illustrated in Figure 1, EfficientPunct begins in
two branches which separately process the audio signal a
and transcription text t. Their details are as follows.

2.1. Text encoder

First, the text sequence t is passed through the default
WordPiece tokenizer used by BERT. Then, using a pre-
trained BERT model which we have fine-tuned for pre-
dicting the four previously described punctuation classes,
we obtain final hidden layer text embeddings

Ht = BERT(t). (1)

Ht is a matrix whose columns are 768-dimensional vec-
tors and represent embeddings of tokens. These text em-
beddings contain each token’s context-aware information
about grammar and linguistics.

2.2. Audio encoder

To process raw spoken audio waveforms and obtain
meaningful acoustic embeddings, we use a pre-trained
model built using the Kaldi speech recognition toolkit
[23]. This is directly analogous to previous works’ us-
age of wav2vec 2.0 [24] as their pre-trained audio en-
coder. Kaldi’s TED-LIUM 3 [25] framework first extracts
Mel frequency cepstral coefficients (MFCCs) [22] and i-
vectors, which are then passed to a time-delay neural net-
work for speech recognition. We extract the 12th layer’s
representation of the input audio for further usage in the
punctuation model:

Ha = KaldiTedlium12(a). (2)

Ha is a matrix whose columns are 1024-dimensional em-
bedding vectors. The number of columns is equal to the
number of frames in the original audio.

2.3. Alignment and fusion

The first step of fusing the 768-dimensional embedding
vectors from Ht and the 1024-dimensional embedding
vectors from Ha is to find correspondences between
columns in each matrix. In other words, we must de-
termine the text token being spoken during each frame of
audio. This is performed through forced alignment. Ac-
cording to columns matched between the two modalities’
embeddings, we concatenate them into columns of 1792-
dimensional embedding vectors. To fuse the two con-
catenated portions of each vector, we use a linear layer
to learn affine transformations of embeddings which may
be useful to punctuation restoration.

Many related works opt for attention-based fusion of
the two modalities, but we found forced alignment and a
simple linear layer to be the most parameter-efficient and
competitive approach. Through experiments, we deter-
mined that more sophisticated fusion methods were coun-
terproductive.

2.4. Time-delay neural network

Next, the fused embeddings are passed through a time-
delay neural network (TDNN) [26]. It contains a series
of 1D convolution layers to capture temporal properties
of the features, with a gradually decreasing number of
channels. At the last convolution layer, there are 4 chan-
nels, with each one corresponding to a punctuation class.
The channels are passed through two linear layers with
weights and biases shared among the channels to output
4 values for softmax activation.

2.5. Ensemble method

To complete EfficientPunct, we create an ensemble of the
main TDNN and predictions using BERT’s text embed-
dings only. We pre-trained BERT using the dark- and
light-blue modules in Figure 1, which can still be used
at inference time to obtain a set of predictions that only
consider text, grammar, and linguistics. The other set of
predictions obtained from the TDNN consider both text
and audio.

Let α ∈ [0, 1] be the weight assigned to the TDNN’s
predictions and 1 − α be the weight assigned to BERT’s
predictions. Our final predicted punctuation will be

f(a, t, α) = argmax [αya + (1− α)yt] , (3)

where ya is the TDNN’s softmax values and yt is BERT’s
softmax values. Essentially, if either the TDNN or BERT
outputs a maximum class probability much lower than 1,
then the other model may help resolve the ambiguity in
predicting a punctuation mark.
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Figure 1: The EfficientPunct framework. The top branch predicts using text only, while the bottom branch predicts using
text and audio.

3. Experiments
3.1. Data

Our primary dataset is the publicly available MuST-C
version 1 [27], the same as that used by UniPunc [21]
for sake of fair comparison. This dataset was compiled
using TED talks. We also use same training and test set
splits as the original authors, whose information is avail-
able on GitHub. We further split the original training set
into 90% for training and 10% for validation. Please see
Table 1 for full information.

Table 1: Training, validation, and test set information

Set Number of samples Total duration (h)

Training 92,723 392.0
Validation 10,301 43.5

Test 490 2.8

Each sample is an English audio piece of approxi-
mately 10 s to 30 s with the corresponding transcription
text. In Kaldi, we use a frame duration of 10ms for
MFCCs, i-vectors, and 12th layer acoustic embeddings.
We follow the procedure described in Section 2.3 to gen-
erate a matrix of aligned embeddings for each data sam-
ple. Then, to obtain examples for training and inference,
we consider segments of 301 frames, or 3 s, wherein the
exact middle frame is the point of transition from one text
token to the next. The resulting example will thus be la-
beled with the punctuation following the prior token and
occurring at the middle frame. We use a context win-
dow of 3 s, because this duration should be sufficient to
capture all acoustic and prosodic information relevant to
a punctuation mark, such as pauses and pitch rises. At
the same time, this duration is not so long as to include
much unnecessary information, such as extensions into
adjacent words.

For the entire dataset, punctuation label distributions
were as follows. Due to the highly imbalanced nature
of the dataset, we sampled less occurring classes more

frequently for training so that, in effect, all class counts
are equal, and the network avoids learning only the prior
probability distribution.

Table 2: Punctuation label distributions

Label Number of examples % of total

No punctuation (NP) 3,567,572 86.9%
Comma (,) 280,446 6.8%
Full stop (.) 238,213 5.8%

Question mark (?) 20,897 0.5%

Moreover, since BERT was already pre-trained on
massive corpora, we fine-tune it for punctuation predic-
tion using the National Speech Corpus [28] of Singa-
porean English, in addition to MuST-C.

3.2. Training

To fine-tune BERT and pre-train the text encoder, we
place two linear layers on top of the base, uncased
BERT’s last hidden layer for four-way classification. For
the pre-trained audio encoder, we use the TED-LIUM 3
[25] framework in Kaldi.

Our main TDNN module for punctuation restoration
comprises seven 1-dimensional convolution layers, with
said dimension spanning across time. Figure 1 shows the
number of input and output channels of each layer. The
kernel sizes used are, in order: 9, 9, 5, 5, 7, 7, 5, alternat-
ing between no dilation and a dilation of 2. The stride was
kept at 1 in all layers. Additionally, we apply ReLU acti-
vation and batch normalization [29] to the output of each
layer. We trained using stochastic gradient descent [30]
with learning rate 0.00001 and momentum 0.9, instead of
the typically used Adam optimizer [31]. This allowed for
greater generalizability but still reasonable training speed
[32].

To experiment with our ensemble, we explored the
effect of varying α, the weight assigned to the TDNN for
final predictions. 1 − α is the weight assigned to BERT.



In Section 4, we report results for α = 0.3 to α = 0.7 in
0.1 increments.

We used a standard Linux computing environment
hosted on Google Cloud Platform with a single NVIDIA
Tesla P100 GPU. Training took roughly 2 days, and infer-
ence can be performed on CPU-only machines 50 times
faster than real time, or in about 0.02 seconds per second
of audio.

4. Results
Our results reported in Table 3 includes a comparison
with current state of the art (SOTA) and best-performing
models, MuSe [20] and UniPunc [21]. We also divide the
reporting of EfficientPunct’s results into three categories:

1. EfficientPunct-BERT considers text only, which is
equivalent to the fine-tuned BERT model.

2. EfficientPunct-TDNN considers text and audio via
our TDNN.

3. EfficientPunct is an ensemble of predictions from
categories (1) and (2) with α = 0.4, the best per-
forming weight as reported in Section 4.2.

Categories (1), (2), and (3) are reported in the third,
fourth, and fifth rows of Table 3, respectively.

As is standard in punctuation restoration research, we
report the F1 scores of commas, full stops, and question
marks. The “overall” F1 score aggregates these while
considering the imbalanced classes’ varying numbers of
examples. We also state each model’s number of parame-
ters to provide an indication of computational efficiency.

4.1. EfficientPunct and submodules

Our main EfficientPunct model achieves an overall F1
score of 79.5, outperforming all current state of the art
frameworks by 1.0 or more points. We also achieve high-
est F1 scores for each individual punctuation mark, with
the most significant improvement occurring for question
marks. These were accomplished with EfficientPunct us-
ing less than half of UniPunc’s total number of parame-
ters, which achieved the previous best results. The sig-
nificant improvement in recognizing question marks may
be attributed to our audio encoder, Kaldi’s TED-LIUM
3 framework, aiming explicitly at phone recognition. In
this process, the acoustics surrounding question marks
may be more pronounced in the embedding representa-
tion than other acoustics models.

Even more lightweight models are EfficientPunct-
BERT and EfficientPunct-TDNN. EfficientPunct-BERT
is simply a concatenation of two linear layers and a soft-
max layer on top of BERT. With the incorporation of au-
dio features, we observe that EfficientPunct-TDNN in-
deed performs slightly better.

These results validate the strength of TDNNs, tra-
ditionally used in speech and speaker recognition, in
punctuation restoration. UniPunc and MuSe both used
attention-based mechanisms for fusing text and acoustic

embeddings, but alignments learned as such rely on train-
able attention weights. Our forced alignment strategy
likely generated more precise temporal matches between
text and audio. Combined with a TDNN architecture, we
achieved a significantly more efficient model.

4.2. Ensemble weights

In this section, we observe the effect of ensemble weights
on EfficientPunct’s performance. Equation 3 details the
role ofα in weighting predictions made by the TDNN and
BERT, with α = 0 meaning pure consideration of BERT,
and α = 1 meaning pure consideration of the TDNN.

Table 4 reports the effect of α on model performance.
When both BERT and the TDNN play an approximately
equal role in the ensemble, a fair voting mechanism is
enabled, and we achieve the highest F1 scores. How-
ever, notice that α = 0.4, a weight that considers BERT
slightly more strongly than the TDNN, achieves the max-
imum overall F1. This gain comes mostly from sharper
comma predictions, which present notorious difficulties
due to varying grammatical and (transcription) writing
styles. We reason that α = 0.4 excels, because a stronger
reliance on BERT’s language modeling perspective yields
more linguistically correct punctuation, as agreed upon
by countless writers’ contributions to BERT’s training
corpora.

The strength of our ensemble method is that, in
cases of uncertain predictions by either party, i.e. ap-
proximately equal softmax probabilities over all classes,
the other can provide guidance to clarify the ambiguity.
This process demands very little additional parameters
through which the input must be passed, as shown by the
last two rows of Table 3, but greatly advances state of the
art performance.

4.3. Parameter Breakdown

In order to show the specific modules in which we attain
superior efficiency, we further break down the parameters
count from the last column of Table 3. In Table 5, we
detail the number of parameters devoted by each model
to extracting embeddings and inferring those embeddings
to make punctuation decisions.

EfficientPunct requires much less computational cost
in both the embedding extraction and inference stages.
Our usage of Kaldi’s TED-LIUM 3 model brought mas-
sive efficiency gains compared to MuSe and UniPunc’s
usage of wav2vec 2.0. Moreover, our inference module
uses less than a tenth of UniPunc’s parameters in the same
stage, which achieved the previous best results.

1Statistics taken directly from UniPunc paper due to pub-
lic inaccessibility of certain models hindering our ability to run
them. Fairness of comparison is ensured, since we use the exact
same training and test sets as the UniPunc authors.

2Number of parameters in MuSe was conservatively esti-
mated from information provided in the original paper.



Table 3: F1 scores of EfficientPunct and its various submodules on each punctuation type, compared against existing state
of the art (SOTA) models. EfficientPunct-BERT considers text only, EfficientPunct-TDNN considers text and audio, and
EfficientPunct predicts using an ensemble of the prior two.

Model Embedding Comma Full Stop Question Overall Number of
Type(s) Used Parameters

SO
TA MuSe1,2 BERT, wav2vec 2.0 73.2 83.6 79.4 77.9 1.7× 108

UniPunc1 BERT, wav2vec 2.0 74.2 83.7 80.8 78.5 2.5× 108

O
ur

s EfficientPunct-BERT BERT 73.4 83.9 84.7 78.4 1.1× 108

EfficientPunct-TDNN BERT, TED-LIUM 3 74.3 83.6 85.8 78.5 1.2× 108

EfficientPunct (Ensemble) BERT, TED-LIUM 3 75.4 84.3 86.5 79.5 1.2× 108

Table 4: F1 scores for different α weights

α Comma Full Stop Question Overall

0.3 75.0 84.1 86.3 79.2
0.4 75.4 84.3 86.5 79.5
0.5 75.0 84.0 86.5 79.1
0.6 75.0 83.8 86.2 79.0
0.7 74.8 83.8 85.8 78.9

Table 5: Number of parameters required in various stages
of each model

Model Embedding Inference TotalNetwork Network

MuSe 1.6× 108 4.3× 106 1.7× 108

UniPunc 2.0× 108 4.8× 107 2.5× 108

EfficientPunct 1.1× 108 3.0× 106 1.2× 108

5. Conclusion
In this paper, we explored the application of time-delay
neural networks in punctuation restoration, which proved
to be more computationally efficient than and as effec-
tive as previous approaches. Combined with BERT in an
ensemble, EfficientPunct establishes a strong, new state
of the art with a fraction of previous approaches’ num-
ber of parameters. A key factor of our model’s success
is removing the need for attention-based fusion of text
and audio features. In previous approaches, multiple at-
tention heads added extraordinary overhead in the punc-
tuation prediction stage. We demonstrated that forced
alignment of text and acoustic embeddings, in conjunc-
tion with temporal convolutions, rendered attention un-
necessary.

Additionally, we studied the effect of different
weights assigned to members of the ensemble. We found
that a slightly stronger weighting of BERT against the
multimodal TDNN optimized performance by emphasiz-
ing language rules associated with punctuation.

In future works, the effectiveness of jointly train-
ing ensemble weights and the TDNN may be examined,
which could allow the learning of an optimal ensemble.

Jointly training with the text and audio encoders may also
be considered, but this procedure should not inhibit the
encoders’ generalizability for purposes other than punc-
tuation restoration. Finally, we would like to explore
the applicability of EfficientPunct in more languages and
a similar framework for other post-processing tasks of
speech recognition.
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