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Nonlinear Piezo-Actuator Control by
Learning Self-Tuning Regulator

C. James Li,' Homayoon S. M. Beigi,’
Shengyi Li,* and Jiancheng Liang®

This paper presents a learning self-tuning (LSTR) regulator
which improves the tracking performance of itself while per-
forming repetitive tasks. The controller is a self-tuning regu-
lator based on learning parameter estimation. Experimentally,
the controller was used to control the movement of a nonlinear
piezoelectric actuator which is a part of the tool positioning
system for a diamond turning lathe. Experimental results show
that the controller is able to reduce the tracking error through
the repetition of the task.
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output of the plant

= forgetting factor in the repetition domain
= forgetting factor in the time domain

= data vector

parameter vector

polynomial of the system poles

polynomial of the system zeroes

vector of generalized forces due to centrifugal and
Coriolis forces
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identity matrix

time step

covariance matrix of errors in parameter estimates
no. of sampling intervals for the trajectory

d step delay operator

repetition number

time step

control actions (plant input)
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1 Introduction

Several advanced schemes have been proposed for an im-
proved performance, which would generate control actions to
accommodate nonlinear dynamics. These include, for example,
nonlinear feedback control [1], feedforward control [2], re-
solved motion control [3, 4], sliding mode control [5], repetitive
control [6, 7], and learning control [8]. In particular, adaptive
controls have drawn a lot of attention in various applications
[9-12]. One class of these adaptive controllers is the self-tuning
regulator [9].

A self-tuning regulator consists of a parameter estimator
and a controller. The parameter estimator estimates the pa-
rameters of an approximated model of the controlled system
by utilizing a recursive estimation scheme. Based on the ap-
proximate model and the estimated parameters, the controller
adjusts its actions to maintain its performance. Therefore, the
performance of a self-tuning regulator depends greatly on that
of the parameter estimator employed.

The existing recursive least square (RLS) algorithms do not
utilize their past experience in estimating repetitive parameters.
The implication is that the system will keep making the same
errors at corresponding times in the duration of each repetition.

Another limit of these estimators is that they have to keep
the changes of estimations small between neighboring sampling
instants to maintain their immunity to noise and disturbances.
Consequently, the estimators cannot respond to large changes
of parameters quickly.

The objective of this paper is to present a learning adaptive
control scheme based on a learning estimator which utilizes
the information from past performances of a repetitive task
to refine the estimate of the plant parameters. Consequently,
the learning adaptive controller improves its performance
throughout the repetitions. Since the adaptation of parameters
at all sampling instants is made over the repetitions of the task,
the estimator is free to follow the changes of parameters over
time.

II The Self-Tuning Regulator

References [12-14] provide a detailed description of the self-
turning regulator and parameter estimation. The self-turning
regulator has been applied to the control of nonlinear systems
such as robots based on linear discrete uncoupled models of
the plant. The rationale of this approach is that linearization
of the nonlinear governing equations at each sampling instants
would vield linear difference equations of time-varying pa-
rameters.

Typically, a self-tuning regulator models a plant with a dif-
ference equation such as follows and uses a recursive estimator
to estimate the parameter vector #(¢) at each sampling instant
and adjusts its control action accordingly. Therefore, the over-
all performance of the control system is very much dependent
on how close these estimates are to the real system parameters.
The difference equation has the form of:

a(k)=¢" (k)6(k)+v(k) €Y
where
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Fig. 1 The learning self-tuning regulator

Fig.2 Sampling instants in each repetition of a task
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the following algorithm can be used [13, 14]:

0(k) =6(k—1)+L(k—Dia(k)—8" (k- 1)é(k)] (Ga)
P (k- 1)(k)
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Typically, an initial estimate of the parameters has to be
given to the estimator to start the recursion. Frequently, this
estimate is different from the real parameters. Therefore, a
tracking error will be produced until the parameter estimator
catches up which may never be achieved if the parameters are
varying from one sampling instant to the next. Consequently,
a persistent tracking error resulted from the lagging of the
estimate of the parameters at all times is inevitable.

If the same task is executed repeatedly, the controller repeats
it without looking back at how it had performed previously.
Therefore, the controller will make the same errors at corre-
sponding times of repetitions.

The following proposition of a learning estimator provides
a solution which will allow the use of the information acquired
from previous repetitions to improve the estimate of the pa-
rameters over repetitions of a task. With better estimates of
parameters the self-turning controller will be able to reduce
tracking errors over the repetitions of a task.

III Learning Recursive Least Squares Estimator and
the Control Law

Figure 1 illustrates the complete closed-loop system which
consists of the learning parameter estimator and the One-Step-
Ahead controller which was selected for its simplicity [9].

We will use Fig. 2 to illustrate the idea behind the proposed
learning parameter estimator. Each dot in Fig. 2 represents
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Fig. 3 The experimental setup of the diamond turning tool

one sampling instant. Each row of (p + 1) dots represents a
run of the task which is numbered from repetition 0 to rep-
etition r.

Let us look at time step k of repetition r, and assume that
there is a linear difference equation which adequately describes
the dynamics of the plant.

o' (k)=9"" (k)8 (k) +v" (k) @)
where,
0" (k) =107 (k)65 (k)05 (k)05 (K), ..., Onap(K)],
o (k)=[-a'(k—-1),-a'(k=2), ...,
—a (k=N),u"(k=1),u"(k=2), ..., u" (k—M)]

Forr=0,1,2,...,r, Eq. (4) gives a set of linear algebraic
equations which may be written in the matrix form as

o (k) =®" (k)8 (k) +v" (k)

where,
v (k) =[0°(k),0" (k) v (k), ..., v (k)]
o’ (k) =[a"(k),a' (k),&*(K), ..., o' (k)] ®
and
" (k)=[¢" ¢' ... ¢']

It can be easily shown that the least square estimate of 8" (k)
minimizing the sum of the squares of the equation errors,
v"(k)s can be calculated recursively as follows [15]:

=8 () +L (e (k)-8 e k)] (D

P'(k)$"™" " (k)
']‘+Qr+]’ (k)P!{k}QJH—](k)

L'(k)= ®)

r r+1’ r
P’*'{k}:” L'(k)¢"" " (K)IP'(k) ©)
Y

For a repetitive task which takes p sampling interval (p +
1 sampling instants) to complete, one would need (p + 1)
linear difference equations to approximate the real equation
of motions. The (p + 1) sets of parameters of these difference
equations can be updated independently by Eq. (7) from one
repetition to the next. Since this updating does not have to be
done on-line as long as it is done before the next repetition is
started, the demand on the on-line computing power is much

less than traditional adaptive controllers.

Y Experimental Results

In order to study the behavior of the proposed controller in
the control of a real nonlinear plant, the controller was used
to control a piezoelectric actuator which is part of a diamond
turning lathe. In precision machining such as diamond turning,
there is a lot of repetitive error sources such as spindle run-
off error and guideway geometric error which would produce
inaccuracies on the workpiece if left uncompensated for. Thus,
a tool positioning system is called for.

The experimental setup is illustrated in Fig. 3. The tool
holder, which is made out of a complete piece of steel using
an electric discharge machine, has a construction of two par-
allel elastic plates which provides a small axial rigidity in com-
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Fig. 4 Measured static response of the piezoelectric tool positioning
system
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Fig. 5 Tracking error of the piezo tool at repetitions 0, 1, 6 and 10

parison to other degrees of freedom. Therefore, the diamond
cutting tool moves back and forth as the piezoelectric actuator
expands and shrinks. This movement is measured by the in-
ductive displacement sensor which is an integral part of the
tool holder.

The piezoelectric actuator is made of PZT-La stack of fifty
disks which has a dimension of 14 X 16 X 0.5 mm. The
actuator generates displacement through the mechanism of
electrostrictive. This material has less hysteresis loss and better
aging property than that of piezoelectric material. However,
it has a very nonlinear characteristic between the displacement
and the electrical potential applied to it. The parabolic char-
acteristic curve of the actuator is shown in Fig. 4. The presence
of the hysteresis nonlinearity is also obvious since the curve
follows different paths while the voltage is increased and de-
creased.

In our experiments, the tool is commanded to follow a square
wave with an amplitude of 1.1 um and a period of 2.3435
second. The sampling period is 0.15625. The first execution
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Fig. 6 Sum of error squares over repetitions for piezo tool control

of the task was carried out by a PD controller. Then, the
learning adaptive controller performed the following repeti-
tions. At the beginning, we used a second order difference
equation as the plant model and the tracking error actually
got larger and larger over the repetitions. Thus, we increase
the order of the model from two to three. This enabled us to
obtain a satisfactory controller.

Figure 5 shows the tracking error versus time measured by
the inductive position transducer at repetition 0, 1, 6 and 10.
It is obvious that significant reduction of tracking errors was
achieved by the proposed controller over the repetition of the
desired trajectory. Figure 6 shows that the sum of squares of
errors decreases as the number of repetitions increases.

VI Conclusion and Future Development

Experiment results show that the learning self-tuning reg-
ulator is a quick learning controller which reduces tracking
errors of the nonlinear system over repetitions. Also, the fact
that the parameter updating part could be done off-line be-
tween repetitions, makes this control algorithm very feasible.
In fact, compared with a PD (proportional plus derivative)
controller, only three more additions and three more multi-
plications have to be done in real-time at each time step if a
second order difference equation is used as the model. How-
ever, more memory is needed to implement the controller. The
amount of memory needed for implementing the controller
for an n degree of freedom system is =22 # # of time steps
in each repetition * n.

The experimental results have shown that the proposed
learning self-tuning regulator can be applied to the control of
a nonlinear system such as a piezo tool positioning system.
Possible applications include the control of robots, precision
machining, process controls and other manufacturing proc-
esses. Also, the notion of a learning parameter estimator could
be applied to other parameter estimators than the RLS esti-
mator.
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