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Most of the dynamic information present in an on-line handwriting signal is often
ignored by on-line handwriting recognition systems. It is shown here that the
dynamic information is complementary to the shape information and may be used
to improve the accuracy of the recognition system.

1 Introduction
This paper presents results of an effort to use the dynamic information present
in an on-line handwriting signal. On-line handwriting recognition systems
often ignore most of the dynamic information available in the signal. They
commonly go to the extent of retaining the order of points being sampled and
throwing away all other dynamic (speed) information through a resampling of
some sort. The system of [1], developed by our group at IBM Research. In the
algorithm used by the system in [1], the writing is re-sampled to produce equi-
distant points; then a segment of the writing with a fixed number of points
(hence the same Euclidean Length) is used to produce the feature vector. This
feature extraction technique is used for both training and decoding. With a
system of this type, the characters should be formed at a nominal size to get an
acceptable comparison. For this reason, a size normalization is very important
before training or decoding. 2

To improve the recognition results of our current system !, an effort was
initiated to look at features which would be generated based on the dynamics
of the handwriting data under the assumption that parts of the information
obtained through these features would be complementary to those generated
by existing features (referred to here as static features for the purpose of dis-
tinction). It is hoped that the union of these features in the form of com-
plementary codebooks will increase the overall accuracy of the handwriting
recognition system. The system of interest recognizes unconstrained handwrit-
ing (any combination of cursive or discrete writing styles). Size normalization
is not as important with these dynamic features; although, a velocity (time)
normalization would be required.



2 Handwriting Model

The general equation of motion of most rigid-body systems, with the consid-
eration of dynamics such as inertia, gravity, Coriolis, Centrifugal, and other
forces may be written as follows:

T = M(a)é + C(a, &) + F(&) + G(a) + T (1)

with the following vectors defined: generalized forces supplied by the actua-
tors (muscles), T, generalized coordinates, «, equivalent mass matrix, M(«),
generalized forces due to Coriolis and Centrifugal accelerations, C(a, &), gen-
eralized viscous friction forces, F'(&), generalized gravitational forces and other
potential energy such as stiffness, G(a), and disturbances, friction, and other
unmodeled forces, Ty. In equation 1, all vectors are of dimension nzl and
M () has dimension nzn.

Equation 1 may be linearized about a set of reference coordinates at each
time instant, hence approximating the non-linear equations of motion by a
set of second order linear differential equations. Considering the governing
equations of motion for the human-hand motor control, used for handwriting,
we may make further simplifications by ignoring all forces but the D’Alembert
forces and spring stiffness. These approximations only hold true under the
conditions that the speed of writing is within some nominal range and that
the hand moves in a two dimensional trajectory related to producing legible
handwriting. Hollerbach, in his 1980 Doctoral Thesis 3, made even greater
simplifications to this model by assuming a decoupled mass matrix. However,
the mass and spring stiffness would still be functions of time even if we ignore all
other forces. Another assumption which also holds pretty well is that the values
for mass and spring stiffness are piecewise constant along a pen trajectory.
These pieces along which the system parameters remain nearly constant are
bordered at points of the extrema in the z and y velocities. These points
coincide with zero velocity points for the corresponding coordinate, extrema of
the dynamics (figure 1). Under certain assumptions such as minimum energy,
minimum jerk, etc., these boundaries and the models may change. 3 *

Considering these approximations, let us then assume that the differential
equations for the handwriting generation process may be approximated by a
two dimensional second order equation with linear time-invariant coefficients
along a piece of writing between any two consecutive velocity extrema in each
coordinate (z and y), given by figure 1. Under these assumptions, the solution
of the approximate differential equation, in the approximation region, would
be of the usual sine and cosine form. In fact the velocity in each coordinate
will also have the same form. For the sake of modeling handwriting it is better
to consider the velocity rather than the position for the apparent reasons of
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robustness to noise and pre-emphasis. Velocities in the z and y directions
under these very crude assumptions are given by equation 2.

& = Azcos(wat + ¢) + T, and  § = Aycos(wyt + ¢y) + Ty (2)

where A;, wg, ¢, and v, are the amplitude, frequency, phase and mean velocity
for the z direction. Also, Ay, wy, ¢, and ¥, are the counterparts in the y
direction. y — ¥, for a word after segmentation may be well approximated by
cosines with constant parameters. This approximation, although not as good,
is also acceptable for the z direction. Initially, the phase may not seem to play
any important role, however, if the word is to be segmented in such a way as
to use either # = 0 or y = 0, then the phase plays the very important role of
synchronization. In fact in some cases a segment boundary is simply deleted
just because too small a window is generated; in these cases, also, the phase is
essential (figure 1).

3 Pre-Processing

In a practical sense, if segments of the writing are written very slowly, some
problems may arise. The first problem is the computation of segmentation
points where # and gy are nearly zero. The finite difference approximation
of velocities in z and y assumes a At which is small in comparison to the
nominal Az or Ay. However, in slow speeds, since the At is a fixed number
equal to the inverse of the sampling frequency, the velocity is not correctly
estimated. To alleviate this problem, a time normalization is done to generate
writing with similar nominal speeds. Figures 4 through 6 show plots of z and
y versus time for three different samples of the character a being written by
the same writer. Shape of the character is the same for all three samples.
In these figures, darker lines show the original points and lighter lines show
points after time normalization. The a in figure b is an example written in
an empirically determined nominal speed. The sample of figure 4 was written
with a uniform speed, but in general much more slowly than the nominal
speed. After time normalization, the plots are very similar to those shown in
figure 5. The character of figure 4 is shown in figure 2. In addition to causing
problems in velocity computation, slowly written characters also contain a fair
amount of noise which was reduced here by using a zero phase low-pass filter.
Filtration results are shown in figure 2 using a thinner line. Finally, figure 6
shows the most complicated case, namely, when the velocity of writing changes
within a single stroke. This often happens when a person is preoccupied by
a thought while writing. Using this time normalization the mean velocities
within segments may be approximated by the mean velocity over the whole
stroke, thus producing compression.



4 Parameter Estimation

Consider the spring model. Equations 2 give the solution to the z and y
velocities of the signal. The v, term of these equations is the mean z velocity
which results in the separation of the characters. If this velocity were equal
to zero, the hand would stay stagnant and all the characters would be formed
overlapping one another. For estimating v,, we assume that the mean velocity
is constant within each stroke. Therefore, the value of v, is estimated to be
the mean value of v, computed within a stroke. Similarly, we notice that if
the writer is to write on a horizontal line (rule), the mean y velocity should
be zero. 7, may also be estimated to be the mean value of the y velocity.
Using these estimates of ¥, and v, and subtracting these values from # and y
in equations 2, the new z and y velocities will be given by:

2 = Agsin(ws(t —to) + ¢z) and § = Aysin(wy(t—to) +¢y)  (3)

Now the problem reduces to estimating the parameters of two sine curves given
a few data points. An optimization problem is formulated for estimating these
parameters. A very good set of initial conditions are picked for the amplitude,
the frequency and the phase. Due to the reliability of these initial conditions,
a penalty is imposed on deviating from the initial amplitude and frequency
values. From this point on, due to the similarity of the equations for  and g,
the procedures for estimating the generic amplitude 4, the generic frequency
wy, and the generic phase ¢, are presented. Here, 7 is considered to be a
generalized coordinate which may be replaced by z or y. Consider an n point
segment of a sampled stroke using the segmentation scheme of last sections. If
the sample interval is denoted by At¢, the following n-dimensional vectors may
be defined where 1 <k < n:

ity = (k— 1)At, §:sp = sin(wptr + ¢n), {4: &k = tpsin(wyty + é5)

= tk2sin(w,7tk + ¢,), C:ep = cos(wyty + ¢,) and €: e, = 7.7— 4,5 (4)

[11y o
[1]

The objective is to find a segment of a sine wave which would model
the data points in this segment with minimal sum of squares of errors. The
parameters to be estimated for each coordinate are the amplitude, A,, the
frequency, wy, and the phase, ¢,. Let us denote the local velocity vector
(with the mean velocity subtracted) of the points in the segment as ﬁ’d. Then,
the simplest objective function for the optimization problem of estimating the
system parameters is the sum of squares of errors along the segment, given by,
Ey = (7, — Ay 8)T (114 — Ay 3).

The problem with minimizing E, is that by increasing the frequency, it is
possible to reduce the value of E,, however, a high frequency sinusoidal curve
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will not fit the general continuous signal well. It is imperative to introduce a
penalty on the size of the frequency. This is especially true since a very good
initial value for the frequency may be obtained by estimating the zero crossings
of the data. A good estimate of the amplitude, A, may also be obtained
by using the point with the maximum absolute velocity. Since the data is
segmented at the zero velocity points, an initial value of 0 is very appropriate
for ¢,,. One may be satisfied with these initial values and not want to compute
the actual values. However, here is where a major contribution of this paper
lies. In picking the segments, any combination of £ = 0 and § = 0 may be
used. Assume that a segment is between the points £ = 0 and § = 0 and we
are estimating the parameters for the y velocity. In this case, the y velocity
does not start from 0. Therefore, the above initial estimates may be off. Note
that as stated earlier, the frequency tends to converge to large numbers to
reduce the error E,, and that we have a good initial estimate of w, based
on zero-crossings. We also have a good initial estimate of the amplitude 4,,.
Based on these arguments, we should not allow the frequency and amplitude
to deviate from their initial conditions by a lot. Therefore,

E, = (ﬁd - Anng(ﬁd — 4,5) + a(wy —&n)? + B(4, — A~n)2 (5)

where @, and /1,7 are the initial estimates of w, and A, respectively and «
and 3 are weighting factors. Considering the objective function of equation 5,
a Newton’s method may be used to iteratively solve for the set of parameters
which minimize E,. To apply Newton’s method to solving this optimization
problem, let us define the state vector for the parameters to be estimated, as,

¢y = [ A, by wy ]T Then the gradient of E,, g, is written as,

—257 (77— Ay3) + 26(4, — Ay)
9=VeBy = —24,¢" (77 — 4,3) (6)
—24,ET By + 20wy, — &)

Similarly, the symmetric 323 Hessian matrix, G, may be written as follows,

2575+ 28 2T (4,5— &) 2T (A, € — &,)
Gra 24, (A4,C+ ) A, [Ann(n +1)At 4 267 (5 — 2A,7§’)]
Gi3 Go3 2A.,7 [An{Tf— 2A,7€I'€—|— éTﬁ]

Given the above equations and solving for G~! analytically, it is simple to
solve for the parameter estimate vector, ¢, using the Newton step,

4:7(7“1) = Q:,(f) — O HEOGE) where i=0,1,2,---
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Here, H is the inverse Hessian and 7 is a weight which may be computed using
any line search technique such as Golden Section, Fletcher, etc.®
5 Reconstruction and Recognition

The parameters of equation 2 may be estimated and used for several pur-
poses including reconstruction and recognition of the writing. The fast match
shape recognition techniques of [1], based on a degenerate single-state continu-
ous density Hidden-Markov Model, were used for obtaining preliminary shape
recognition results, using these estimated parameters. In these tests, the digits
from 0 to 9, upper and lower case letters were trained and tested. The system
was trained on a total of 2303 characters and tested on a total of 833 char-
acters. Characters were not at all uniform and are not presented here due to
space restrictions. The same data files were also used for training and testing
of the fast-match version of the system with static features !. Figures 3, 7
and 8 show the results of these runs. Based on these results, performances of
the two systems are quite complementary, presenting ideal conditions for the
combination of these two codebooks. For example, digit 1 and characters I,
J, j and n get zero accuracy with the static features and an average of 76%
accuracy with the dynamic features. Likewise, F', K and X get zero percent
accuracy with the dynamic features and an average of 50% accuracy with the
static features. The overall character accuracy of the system using dynamic
features is 47% where that of the system using static features is 66%.

Part of the reason for a worse total character accuracy of the system using
the dynamic features is due to the lack of context. The system using static
features, uses the window edges (see figure 1) as its window centers and looks
to the left and right of these centers for a fixed length. These windows are
overlapping one another, hence capturing some local context.! In the dynamic
feature case, only the information within a window (between two consecutive
segmentation points) is used to generate features and therefore no local context
is available. It is quite acceptable to assume that by using a multi-state Hidden
Markov Model, for both cases, the two performances should converge each
other. However, the important point to realize is the complementary nature
of the two systems and the fact that they may be used together to produce
better results. This experiment is being worked on at the present time and
no results are available yet. The delay in obtaining such results is partly due
to the different front ends (windowing paradigms). Some writer-dependent
fast match results are also available for unconstrained handwriting using the
dynamic features. These results were obtained using a lexicon of 368 words
related to computer applications. Writers 1 and 2 had word accuracies of 91.5%
(184 / 201) and 75.8% (229 / 302) respectively. The two writers’ training files
were combined into one and the system was trained tested on the writers to
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show word accuracies of 87.1% (175 / 201) and 70.9% (214 / 302) respectively.

6 Conclusions and Future Research

If the combination of training files is continued further, as discussed at the end
of the previous section, a write-independent prototype set will be established.
Preliminary attempts at doing this have shown that the features should be
tranformed (engineered) to produce better generalization capability through
some normalization. Normalization procedures presented in the Pre-Processing
section of this paper have been considered to achieve such results. These
normalization techniques have not been used in the results shown in the paper.
This is an on-going effort and new results will be presented in the near future.

It is also notable that the correlation coefficient between the frequencies
in the z and y direction is on the order of 0.7 which suggests that one of the
two frequencies may be omitted for the sake of recognition without any large
performance loss. In fact, the removal of the w, resulted in a slightly higher
accuracy for both writers of the last section. This is due to the reduction
of the dimension of the Gaussian mixtures used for representing the dynamic
features® from 6 to 5 which makes the means and variances of these Gaussians
more accurate given the fixed amount of training data. For this reason, ex-
periments have been made to reduce the dynamic features further down to 4
without any loss of accuracy. Due to the different window definition for com-
puting the features in the new system and the system of [1], the two codebooks
are not easily combined. An attempt is being made to generate outputs from
both fast match techniques (static and dynamic) and then pass a combination
of words proposed by these systems to the detailed match scheme of [1].
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