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ABSTRACT

The effect of time lapse has not been studied well in most

biometrics. Here, this effect is studied for Speaker Recogni-

tion, namely, Speaker Identification and Speaker Verification.

The RecoMadeEasyT M speaker recognition engine has been

used to obtain baseline results for 22 speakers who have been

involved in a long-term study. The speakers have given data

in three seatings with 1 to 2 months delay between consecu-

tive collections. The speakers were real proficiency test can-

didates who were asked to speak in response to prompts. At

each seating, several recordings were made in response to dif-

ferent prompts. The error rates are discussed, going from one

seating to the next, for Identification and Verification. Large

degradations are seen across different seatings. Two differ-

ent adaptation techniques have been studied for reducing this

discrepancy with very promising results.

Index Terms— speaker recognition, speaker identification,

speaker verification, time lapse, speaker adaptation

1. INTRODUCTION

The effect of time lapse has not been studied well in biomet-

rics. Although the literature is full of brief discussions about

time lapse effects in speaker recognition, no proper quantita-

tive study has been done on the subject.[1, 2] There are two

main types of time lapse effects: short-term and long-term

(aging). Here, short-term effects are studied for two func-

tions of speaker recognition, namely speaker identification

and speaker verification.[3]

Speaker identification starts with the modeling of the vo-

cal characteristics of speakers based on their sample speech

(called enrollment data) and storing them in a database. Then,

given a new speech excerpt, the recognition engine returns the

identity of the speaker from the database. If the engine allows
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for a no-match result, the process is called open-set identifi-

cation, otherwise, it is a closed-set identification process. If

at the time of testing, the identity of the speaker is presented

to the engine along with the speech sample, then the sample

is matched against the model for that speaker in the database

and some other model(s) representing competing speakers.

If the sample matches the speaker’s model better than the

competing model(s), then the speaker is verified, otherwise

the speaker is rejected. This process is called verification.

The RecoMadeEasy1 speaker recognition engine has been

used to obtain baseline results for 22 speakers who have been

involved in a persistent (ongoing) study.[3]

Speakers were involved in language proficiency testing where

they had to repeat their tests due to undesirable scores. The

speakers used here retook their tests two more times after

the original testing was accomplished. The time lapse be-

tween consecutive tests was on the average between 1 to 2

months. Table 1 provides the dates for the first, second and

third tests for each candidate. The words test and trial will be

used interchangeably from this point on. Each test consists of

multiple audio segments which are each about 1 minute long.

These segments are free-form responses to questions to assess

the candidates’ proficiency in the English language. Unfortu-

nately, due to the fact that this type of study is quite rare, no

standard corpus is available.

The RecoMadeEasyT M Speaker Recognition engine uses a

Gaussian Mixture Model (GMM) (see [3]) approach to con-

duct identification and verification of the speakers. Under

normal circumstances, the first response of the first test (first

trial) is used to enroll the speaker in the database. Consequent

segments are identified or verified against the enrollment data

captured from the first response. This scenario is used to

conduct the rest of the test without any need for a proctor,

therefore reducing the cost of testing. The data is obtained

from a real-world application and has not been manipulated

or specifically collected for this purpose. These are real can-

didates taking tests to be evaluated for English proficiency.

1RecoMadeEasyT M is the Commercial Speaker Recognition Engine of

Recognition Technologies, Inc.



Speaker No. First Trial Second Trial Third Trial

1 2007/08/12 2007/09/09 2007/11/25

2 2007/08/19 2007/10/14 2007/12/06

3 2007/08/05 2007/09/09 2007/10/14

4 2007/10/07 2007/11/11 2007/12/09

5 2007/08/19 2007/10/07 2007/12/02

6 2007/08/16 2007/10/11 2007/12/07

7 2007/08/23 2007/10/14 2007/12/09

8 2007/08/12 2007/09/09 2007/10/07

9 2007/08/12 2007/10/07 2007/12/02

10 2007/09/09 2007/10/10 2007/11/25

11 2007/08/16 2007/10/11 2007/12/06

12 2007/08/12 2007/10/12 2007/12/05

13 2007/08/16 2007/10/11 2007/12/06

14 2007/08/23 2007/10/14 2007/12/02

15 2007/08/12 2007/09/09 2007/10/07

16 2007/08/12 2007/10/07 2007/12/02

17 2007/08/12 2007/10/08 2007/12/07

18 2007/08/14 2007/10/07 2007/12/06

19 2007/08/14 2007/10/08 2007/12/07

20 2007/08/22 2007/10/14 2007/12/07

21 2007/08/12 2007/10/14 2007/12/02

22 2007/08/14 2007/10/12 2007/12/03

Table 1. Time of Audio Capture for Individual Speakers

Tests have revealed that there is substantial degradation in the

results of both open-set identification and verification from

one seating to the next. There are two main reasons for this

degradation. The first well-known reason is known as channel

mismatch between the enrollment session and the recogni-

tion of consequent tests. Many different approaches have

been taken to reduce the effects of this mismatch.[3] Channel

mismatch has in the past been mostly connected to handset

mismatch, however, it is quite more complicated than that. In

addition to handset mismatch, changes in the ambient noise

(sometimes called source noise [4]), acoustic properties of

the ambience (such as echo and reverberation), microphone

distance and positioning (angle), strain on the vocal tracts

(holding the handset on one’s shoulder) and many more are

also responsible for these types of mismatches.[5]

Different techniques have been proposed for handling this

type of mismatch by considering specific sources of mis-

match. These include Handset Score Normalization (H-

Norm) [6], feature mapping [7], and speaker model synthesis

(SMS) [8]. Others have approached the problem by suppress-

ing the effects through using the T-Norm, the Z-Norm [9, 10]

and Feature Warping techniques [11].

The second reason for degradation is a combination of

other factors such as physiological changes, environmen-

tal changes, emotional changes, etc.[12, 13] These effects are

not very well understood and are bundled here in one cate-

gory called time lapse effects. Among these changes, there

are some which get worse with time. We are interested in

these effects which are collectively called time lapse effects.

Note that we are not dealing with what the literature calls

aging, since aging deals with much longer effects, outside

the range of these shorter-term studies. Aging effects deal

with more of the physiological changes that affect speakers

as substantial time progresses.[12, 13]

To see these effects of interest we have considered three

consecutive tests per candidate. The changes between the

first test and the second test include both channel-mismatch

and time lapse effects. However, by doing a third test and

seeing further degradation of the recognition results, we can

conclude that time lapse effects have caused most of the

extra degradation seen from the first trial to the third trial as

compared to the changes from the first trial to the second trial.

First, a description of the data is given in the following sec-

tion. Then, we discuss these degradations in more detail by

doing a quantitative analysis of the Identification and Verifi-

cation results. Following this discussion, we try to reduce the

effects of time lapse using several adaptation techniques and

the results are reported for identification and verification tasks

followed by concluding remarks.

2. THE AUDIO DATA

The audio data was collected using the µ-Law amplitude cod-

ing technique [14] at a sampling rate of 8 kilo Hertz (kHz).

The audio was then immediately converted to the High-

Efficiency Advanced Audio Coding Format (HE-AAC) [15]

which is a very aggressive, lossy and low-bit-rate audio com-

pression technique. HE-AAC was used to stream the audio to

a server through flash. The audio, in turn, was converted back

to µ-Law 8-kHz audio and subsequently converted to a 16-

bit linear Pulse Code Modulation (LPCM) which was used in

the recognizer for enrollment, identification and verification

purposes.

3. A GAUSSIAN MIXTURE MODEL RECOGNIZER

The RecoMadeEasyT M speaker recognition engine was used

for obtaining results. This engine is a GMM-based text-

independent and language-independent engine. It uses mod-

els for the speaker and the competing models to conduct the

identification and verification tasks. The population in the



identification task is the 22 speakers described in the next sec-

tion plus competing models. The models are parameters for

collections of multi-variate normal density functions which

describe the distribution of the Mel-Cepstral features [3] for

speakers’ enrollment data. This distribution is represented by

Equation 1.

p(x) =
1

(2π)
d
2 |ΣΣΣ|

1
2

exp

{

−
1

2
(x−µµµ)TΣΣΣ−1(x−µµµ)
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The so-called “Sample Mean” approximation for 2 is,

µµµ ≈
1

N

N−1

∑
i=0

xi (3)

where N is the number of samples and xi are the Mel-Cepstral

feature vectors [3].

The Variance-Covariance matrix of a multi-dimensional ran-

dom variable is defined as,

ΣΣΣ
∆
= E

{

(x−E {x}) (x−E {x})T
}

(4)

= E
{

xxT
}

−µµµµµµ
T (5)

This matrix is called the Variance-Covariance since the diago-

nal elements are the variances of the individual dimensions of

the multi-dimensional vector, x. The off-diagonal elements

are the covariances across the different dimensions. Some

have called this matrix the Variance matrix. Mostly in the

field of Pattern Recognition it has been referred to simply as

the Covariance matrix which is the name we will adopt here.

The Unbiased estimate of ΣΣΣ, Σ̃ΣΣ is given by the following ex-

pression,

Σ̃ΣΣ =
1

N −1

N−1

∑
i=0

(xi −µµµ)(xi −µµµ)T (6)

=
1

N −1

[

Sxx −N(µµµµµµ
T )

]

(7)

where the sample mean µµµ is given by equation 3 and the sec-

ond order sum matrix, Sxx is given by,

Sxx =
N−1

∑
i=0

xixi
T (8)

[3] describes details of a GMM-based recognizer.

4. BASELINE SPEAKER RECOGNITION

As previously mentioned, each candidate goes through a test-

ing procedure in which questions are asked and responses

from the candidate are recorded. Under usual circumstances,

the first audio response is used to enroll the speaker into the

system. All the responses average to about 1 minute of au-

dio. Figure 1 shows the results of identification of individ-

uals among the 22 candidates in our database. All subse-

quent audio responses are identified at a rate of 100% (an

error rate of 0%). In this case, although the enrollment and

recognition data differ, there is no channel mismatch. These

results are expected from a good commercial recognition sys-

tem. However, as conditions change and the candidates return

to be tested for a second or third time, a substantial degrada-

tion is noted, see figure 1. For the second trial (test) and the

third trial, there is channel mis-match [3, 6] present as well

as time lapse effects. Since the channels are chosen at a com-

pletely random manner in both second and third trials, the ex-

tra degradation seen between trial 2 and trial 3 is most likely

due to time lapse effects.
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Fig. 1. Identification Time Lapse – Usual Enrollment

Figure 2 shows similar results for the verification process. In

this figure, three Detection Error Tradeoff (DET) curves [16]

are presented using the first response in the first test for en-

rollment, consequent data in the first test for verification of

trial 1 and the second response in the second and third trials

for verification of those trials. The plot shows results which

are similar to those seen in the identification case. Namely,
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Fig. 2. Verification Time Lapse using Usual Enrollment

the Equal Error Rate (EER) increases from about 2.5% to

nearly an order of magnitude higher for the second and third

trials. The EER is defined as the point were the missed prob-

ability equals the false alarm probability in the DET curves.

In consistence with the results for the identification tests, the

performance of the verification system also degrades in time

as we move from the second to the third trial, whereas, the

two channel conditions in these trials are statistically as dis-

tant from the channel conditions of the first trial. Therefore,

the extra degradation from the second to the third trial may be

attributed to the time lapse aspects.

5. ADAPTATION TECHNIQUES

To see if the above theory is correct and in trying to allevi-

ate the time lapse degradation, different adaptation techniques

may be used. Adaptation techniques have been discussed in

the literature and they mostly try to adapt a speaker’s model to

a Universal Background Model (UBM), see [3, 6, 17]. Here,

we will further use adaptation to change the model for a can-

didate from the originally adapted model based on the first

enrollment data to a new model which will be more resilient

to changes in the channel and the time lapse effects. The first

technique is data augmentation.

5.1. Data Augmentation

To modify the model for a speaker using data augmentation,

the original enrollment data is retained for the candidate. At

a point when a positive ID of the candidate is made, extra

data is appended to the original enrollment data to provide a

more universal enrollment model for the candidate matching

different channel conditions and time lapse changes. Fig-

ures 3 and 4 show the identification and verification results

respectively, using the new models enrolled by utilizing the

augmented data. The results are in-tune with expectations.
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Fig. 3. Identification Time Lapse – Augmented-Data Enrollment
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Fig. 4. Verification using Augmented-Data Enrollment

The identification performance degrades from a perfect per-

formance to a 5% error rate. This is due to the contamination

of the enrollment data which now contains channel infor-

mation from trial 2 as well as trial 1. It also results, quite

expectedly, in a large improvement for the second trial. This

is the case, since now the model contains channel informa-

tion from the second trial. However, there is also a very big

improvement in the third trial which is partly attributed to the

smoother information content about channels contained in

the enrollment data, although no data from the third session

was used in the enrollment. Since no specific information is

contained in the this enrollment about the channel dynamics

of the third trial, this smoothness is apparently attributing to

better general time lapse performance.

Similar results are seen in figure 4 for verification of the sec-

ond and third trials. In fact, comparing figures 2 and 4 shows

that there is no degradation in the verification of the first trial

with the EER still being around 2.5%. However, the EER of

the second and the third trial have been reduced to only 10%,



though the overall performance in the second trial is still bet-

ter than the third trial as expected.
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Fig. 5. Identification Time Lapse

5.2. Maximum A Posteriori Adaptation

One of the problems with the augmented-data approach of

the previous section is that the original audio data has to be

maintained to be able to do a re-enrollment by adapting from

the speaker-independent model (the speaker model repre-

senting the general population) to the speaker model for the

augmented data. Also, conceptually, the same weight is given

to the old data as is given to the new data. One remedy is to

use the adaptation techniques which were used to adapt from

the speaker-independent model to the speaker model, to adapt

from the speaker model to a new speaker model considering

the new data at hand. The adaptation technique which was

used here is the Maximum A-Posteriori adaptation method.

Other techniques such as Maximum Likelihood Linear Re-

gression (MLLR) may have very well been used for this

purpose. [3, 17]

In doing the MAP adaptation, the number of iterations dictate

the forgetting factor of the technique. The higher the number

of iterations, the more the new data is considered in contrast

to the old data. Normally, about 5 iterations are used to go

from the speaker-independent model to the speaker model.

Initially, this number was used to further transform the proto-

types from the old model to the new model for the speaker.

Figure 5 shows the results for identification using the new

models compared to the usual enrollment and the augmented-

data enrollment. The MAP adapted enrollment using 5 iter-

ations shows much better overall performance than both of

the usual enrollment and augmented-data enrollment models.

However, because it over-trains on the data of the second trial,

the results of the first trial are highly degraded. To remedy

this problem, the number of iterations for this MAP adapta-

tion was reduced to 1. The results are shown in the same

figure ( 5). The results show that no degradation is reported

for the second and third trials, however, the identification per-

formance of the first trial is greatly improved.
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Fig. 6. Verification using 5 iteration Adaptation
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Fig. 7. Verification using 1 iteration Adaptation

Figures 6 and 7 show similar performance for the verification

case. Again, using 5 iterations degrades the first trial by over-

training. Figure 7 portrays much better performance across

the different trials. In addition, the third trial has quite an

acceptable performance although no channel information has

been included in the speaker model from this trial. The EER

for all three trials using a MAP adaptation with one iteration

varies from about 10% for the best case which is trial two (the

trial for which we have adapted) to a respectable maximum of

about 14% for the worst case which is trial one from which we

deviated. Trial three has an EER of about 12% which seems

to coincide with the average EER across the different trials.



6. CONCLUSION

We have seen that there seem to be other effects in addition

to channel-mismatch which further degrade the identification

and verification performance of a statistical speaker recogni-

tion system. We have lumped all these effects into a category

called time lapse effects. These effects along the side of

channel-mismatch effects were somewhat suppressed using

an augmented data approach where the enrollment audio data

is always kept around and augmented with new data whenever

a positive ID is made and this way the overall performance

increases. Although this degrades the best case performance

of the engine.

One of the problems with keeping the enrollment audio data

is the memory-intensive nature of the solution. In addition se-

curity breaches may occur including legal and constitutional

issues with keeping audio data around on a server. Some

constitutions including that of the United States of America

attach an ownership to the raw audio of a person. In addition,

compromised access to the server holding the audio data will

cause security breaches such as spoofing capabilities, etc. [3]

In order to remedy these problems and the performance

degradation issues, we used a MAP adaptation technique to

adapt an existing speaker model to a new model using new

enrollment data. It was shown that using non-aggressive

adaptation works a lot better since over-training causes an

overall degradation in the performance of both identification

and verification engines. From the results we may further

deduce that there is indeed a time-dependent degradation

which may be remedied by using smoother models with more

information across the time-line as well as different channels.

We have only scratched the surface of the time lapse is-

sue and plan to do much further research in this area to do

better speaker model smoothing using other compensation

techniques such as MLLR [17] and Latent Factor Analysis

(LFA) [5]. At the present, the study is being expanded to in-

clude over 100 speakers and to experiment with more re-takes

to see how the time lapse effects and the adaptation results

follow the trends seen here.
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