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ABSTRACT

This paper presents a hierarchical approach to the
Large-Scale Speaker Recognition problem. In here
the authors present a binary tree data-base approach
for arranging the trained speaker models based on
a distance measure designed for comparing two sets
of distributions. The combination of this hierarchi-
cal structure and the distance measure [1] provide the
means for conducting a large-scale verification task. In
addition, two techniques are presented for creating a
model of the complement-space to the cohort which is
used for rejection purposes. Results are presented for
the drastic improvements achieved mainly in reducing
the false-acceptance of the speaker verification system
without any significant false-rejection degradation.

1. INTRODUCTION

Let us consider a possible model for speech as being
a collection of distributions (e.g., Gaussian distribu-
tions). To be able to rank speakers within a database
based on their similarity of speech characteristics, one
needs a distance measure which would be appropriate
for comparing sets of distributions. Once this distance
measure is established, a ranking process may be ap-
plied to order the speakers in a database, in a hier-
archical fashion for future reference. Last year, the
authors presented a method for computing a mean-
ingful distance between two collections of statistical
distributions which is very useful for ranking models
consisting of collections of distributions. [1] Once such
hierarchical structure is established for the speakers in
the database, the job of cohort computation becomes
much easier. This paper presents a classification tech-
nique for the speakers in a database based on a bi-
nary tree structure and provides the means for a quick
computation of the cohort for any speaker in the tree.
Then, false-rejection and false-acceptance results are
given on a database of 184 speakers.

The way the speaker verification is implemented,
the claimed speaker ID is used to find the cohort of
the speaker from the binary tree by considering the
speakers whose models are children of the same parent
some number of generation up the tree.

The above speaker verification will have limited re-
jection capabilities. Two techniques for reducing the
false-acceptance of this verification system are pre-
sented in the form of models created from a space,
complementary to the cohort space. The two tech-
niques have pros and cons associated with them and
are named by the authors as Graduated Complemen-
tary Model (GCM) and Cumulative Complementary
Model (CCM). The details of the derivation of these
two complementary models as well as implementation
issues are presented along with improvement results
for the verification task.

The next section will briefly describe the procedure
for building the speaker models [2]. Then, the de-
tails of building the binary speaker-tree using the dis-
tance measure of [1] are presented after which a brief
description of speaker recognition using these models
and the speaker-tree is given. Then, two very effective
methods are established for creating a rejection mech-
anism used for speaker verification as well as open-set
speaker identification. These methods are shown to
reduce the false-acceptance rate of the speaker recog-
nition by presenting results on a speaker verification
task conducted over a 184-member database of speak-
ers. Finally, some concluding remarks are given for
the improvement of the hierarchical structure to in-
crease performance and accuracy. Please note that
the speaker recognition techniques presented here are
text and language-independent.

2. MODEL BUILDING

As we mentioned in [2], a speaker model is created as
a collection of parameters (Means and Covariances)
for a set of Multi-Dimensional Gaussian distributions.
These distributions model the features produced by
the signal-processing front-end of the engine.

Speaker model Mi is computed for the ith speaker
based on a sequence of M frames of speech, with the

d-dimensional feature vector, {~fm}m=1,...,M . These
models are stored in terms of their statistical param-
eters, such as,

{~µi,j ,Σi,j , ~Ci,j}j=1,...,ni
, consisting of the Mean vec-

tor, the Covariance matrix, and the Counts, for the



case when a Gaussian distribution is selected. Each
speaker, i, may end up with a model consisting of ni

distributions. The distance measure of [1] enables us
to devise a speaker recognition system with capabili-
ties for Speaker Identification, Verification and even-
tually Clustering by creating a hierarchical structure.

3. HIERARCHICAL CLASSIFICATION –
BINARY TREE

A binary tree is constructed using the distance mea-
sure of [1]. See figure 2. Each speaker model is com-
puted as described above and in detail in [2]. Once the
models are created, they are ranked using a a bottom
up technique in which each individual model (a col-
lection of multi-dimensional Gaussian distributions)
is associated with a distinct speaker and constitutes
a leaf of the tree. To perform the primary building
operation of the tree, these models are compared with
each-other using the distance of [1].

3.1. Pairing

Figure 1 shows a set of sorted distances δkm which
associated with speakers i and j. Please note that k
and m are the indices of the sorted list and gener-
ally differ from i and j. The sorting is done in a way
that δ1m = 0. Then, going down the table and left to
right, the pair ij with the smallest distance δkm are
paired based on the next available non-paired speak-
ers with the smallest distance between their models.
Due to the nature of the distance measure, these dis-
tance computations between models are orders of mag-
nitude faster than a traditional Maximum Likelihood
approach.

Figure 1: Pairing Speaker Models

3.2. Merging

Once all speaker pairs are determined, each pair of
models is merged using the following technique for
producing a new model with the characteristics of
both contributing models. Figure 4 shows a small
example with two models being merged, each hav-
ing a different number of Gaussian distributions as-
sociated with them. The superscript in the notation
denotes the model number and the subscript denotes
the distribution number. Please note that the pairing
of the distributions follow the techniques given in [1].
The merged Gaussian distribution with the left and

right subscripts i and j denotes the distribution cre-
ated from the ith distribution of model 1 and the jth

distribution of model 2. The counts for the merged
distributions are simply the sum of counts of the two
building distributions. The new model will have the
same number of distributions as the maximum of the
two models used in its conception. Sx and Sx2 de-
note the first and second order sums of the feature
data. These parameters are used as an alternative set
of parameters defining the Gaussian distributions of
interest.
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Figure 2: Tree Building Procedure

Each merged pair of models creates a new parent
model for the two, in the next level of the binary tree.
If the number of models in a level are not divisible
by two, then the remaining model in that level may
be merged with the members of the next generation
(level) in the tree. As each level of the tree is cre-
ated, the new models in that generation are treated
as new speaker models containing their two children
and the process is continued layer by layer until one
root model is reached at the top of the tree. In this
structure, finding the cohort of a speaker is as simple
as matching the label of the claimed ID with one of
the leaf members; going up the tree by as many layers
as desired (based on the required size of the cohort);
finally, going back down from the resulting parent to
all the leaves leading to that parent. The models in
these leaves will be the closest speakers to the claimed
speaker.

4. SPEAKER RECOGNITION
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Figure 3: Speaker Verification Results



4.1. Speaker Verification

The training data is stored using a hierarchical struc-
ture so that accessing the models would be optimized
at the time of recognition. The Speaker Verification
is implemented by extracting a set of speakers (with
their models) from the training database considering
only those speakers with close proximity, as given by
the distance measure of [1], to the speaker with the
claimed ID. The claimant’s sample speech is then used
to generate a test model which is compared to the
models in the Cohort set. The models are sorted by
the distance and the training model with the small-
est distance from the test model is used to obtain the
verification result. If the background model or any
speaker other than the claimant comes up at the top
of the sorted list, the claim is rejected. Otherwise, it
is accepted.

Alternatively, a thresholding method may be used
to compare the likelihood of the input speech given the
claimant model versus the average likelihood given the
rest of the cohort members.

Mi = {~µi,j ,Σi,j , pi,j}j=1,...,32 = {Θi,j}j=1,...,32,

denotes the set of speaker models, consisting of the
mean vector, diagonal covariance matrix, and mixture
weight for each of the 32 components of the ith 12-
dimensional Gaussian Mixture Model (GMM) used to
model the training data.

The test data is denoted as O = {~fn}n=1,...,N , and
we assume that it is i.i.d. Let Σi,j(k) denote the vari-
ance of the kth dimension. Given the observed testing
data and an identity claim i, verification proceeds by
first computing

log P (O|Mi) =

N
∑

n=1

log





ni
∑

j=1

pi,jp(~fn|Θi,j)



 (1)

where, p(~fn|·) is a Normal pdf. We compare this to
∑

j ∈ cohort - i

wj log P (O|Mj),

where we chose wj to be uniform. This is an approxi-
mation of

log P (O|{cohort of Mi} −Mi).

The verification score used in obtaining the ROC
curves presented later is given by the difference of
these two values. The procedure is thus text-independent.

4.2. Open-Set Speaker Identification

In case of Speaker Identification, the claimant’s test
model may be compared, using the same distance mea-
sure, to all the models in the database including that
of the background model. This may be expedited
using a top-down sweep of the tree to arrive at the
correct leaf with only log2N comparisons, each time
going in the direction of the child with the smallest
distance. Please note This may constitute a rejection
if the background model is the closest model to the
test model.

4.3. Speaker Classification

Speaker Classification as a direct product of the tree
building is very useful in many different occasions in-
cluding the narrow-down of the search space for doing
Speaker Recognition. The systems presented in [3,
4, 5] use speaker classification for performing speaker
segmentation as well as improving speech recognition
accuracies through adaptation.

5. INITIAL RESULTS

Please also note that if the claimant is an imposter
and just happens to be closest to the claimed identity
in the cohort which is picked, with the probability
of 1/(CohortSize) a false-acceptance is reached. The
first row of results presented in the table of figure 3
present the false-rejection and false-acceptance results
conducted on 60 speakers out of a population of 184
speakers in the database. This data is collected using
nine different microphones including Tie-Clip, Hand-
Held and Far-Field microphones. The training data
lasts an average of 40 seconds. The test was performed
using an average of 6 seconds of independent data. 60
of the 184 speakers were randomly used for the testing.

The next section presents two novel techniques for
solving the false-acceptance problem of verification.

Figure 4: Merging Models

6. COMPLEMENTARY MODEL

Two Complementary Model Techniques are proposed
to solve the false-acceptance problem. The first tech-
nique will create a single model, used as a represen-
tation of all the models in the tree and outside the
tree (given some background data). This model is
called the Cumulative Complementary Model (CCM)
by the authors. CCM is basically a merged model
based on the complement of the cohort. Figure 5
shows a speaker-tree with a graphic representation of
the models used to create the CCM for an example co-
hort. Note that this is a very quick computation since
the tree structure is used to minimize the computa-
tion. The following sections list the model production
and pros and cons of the two techniques:

6.1. Cumulative Complementary Model (CCM)

• The complementary model for each node is com-
puted by merging the siblings with the complemen-
tary model of the parent as we travel down the tree.



• There no confidence information available by the re-
jection mechanism. Also, the similar and dis-similar
data are merged giving a non-robust merged model.
Too many merges are done and since the merging is
suboptimal, this will degrade accuracy.
• Decoding is faster in GCM since the modified co-
hort consisting of the original cohort and the CCM is
smaller. Training is slower due to many merges.

Figure 5: Speaker Verification Results

6.2. Graduated Complementary Model (GCM)

• The complementary model for each node is the model
merged from all its siblings. See figure 5.
• When building the modified cohort, the complemen-
tary model of the node and of its parents are added
to the cohort list and if the verification finds one of
these complementary models to be the closest to the
test speaker, it is rejected.
• There is an inherent confidence level associated with
this method. The higher the level (closer to root), the
more confident the rejection decision.
• No merges are necessary, hence the training is faster
than CCM, but the testing is slower.

7. FINAL RESULTS AND CONCLUSION

The background model denoted in figure 5 may be
computed by obtaining a lot of data not present in the
tree and pooling the data together to create a single
model. This will allow further rejection capability for
imposters who were not enrolled in the database.

7.1. Coplementary Model Results

The table of figure 3 shows a drastic reduction in the
false-acceptance of the verification system when using
the two proposed complementary models. As we had

expected, the GCM produces much better results. In
fact it reduces the false-acceptance of the system to 0
by not much of a degradation in the false-rejection.

In order to perform a quick speaker identification
of log2N distance computations versus N , the tree
should be optimized for better top-down performance.
This allows an Identify and Verify scheme for better
performance of the verification as well, when com-
pared to using the claimed ID as the cohort identifier.
The authors are currently working on this optimiza-
tion problem.

7.2. Likelihood-Based Verification Results

Using the Likelihood-Based scheme, we have obtained
the following preliminary results which take into ac-
count mis-match conditions. All training data for a
given speaker was collected from only one of 8 micro-
phones. The testing data for the speaker was collected
on the training microphone (the matched case) as well
as on one of the other 8 microphones (the mismatched
case). The imposter trials can be from any of the 8
microphones.

In the experiments 28, (male and female) speakers
were used, however for any given piece of training or
testing data, the gender was unknown. In addition,
we tried to get an even distribution of microphones
for training and testing. We limited the amount of
training and testing data to approximately 10 seconds.
There were a total of 125 speakers in the tree. There
were 199 matched verification tests, 214 mismatched
tests, and 382 imposter tests. The imposters were
taken from a population that excluded any of the en-
rolled speakers. The equal error rate was 13.8%.
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