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ABSTRACT

Here we investigate an instance of the abstract problem
of pattern recognition under mismatch conditions: Models
of phenomena are built with data collected in the train-
ing environment but must be used to recognize the same
phenomena in another environment. The specific problem
is speaker verification, where the training and testing data
for each speaker can come from one of many different mi-
crophones. We use data, unlabeled with respect to channel
or environment, to build, unsupervised, an easily extensi-
ble, hierarchical structure that at the finest level consists
of individual speaker models, but at the coarsest level is
a collection of all of the models. We then have the abil-
ity to automatically generate evolving background models
from any layer of our hierarchical model when we wish to
perform a verification. We give results to show that the
richer our hierarchical structure, the better we do in terms
of verification.

1. INTRODUCTION

We consider the problem of speaker verification under mis-
matched conditions when the number of environments in
which training and testing data can be collected is large and
variable. We describe our technique for dealing with multi-
ple environments, making a special note of the fact that it
is unsupervised and incremental, and so can potentially be
used in situations where we do not know beforehand, the
nature of the environments in which we will be collecting
data. For example, take situations in which the only way we
know about new environments is through enrollment data.
In the multi-environment verification context, the technique
is best described as one allowing easy modification of the
normalizing background to reflect data from perhaps new
and unknown environments, as those environments are seen
in enrollment. Specifically, we analyze performance on data
collected form 8 different microphones in a relatively noisy
environment, a cafeteria. We show that we are able to ob-
tain an improvement in multi-environment speaker recog-
nition performance by adding information about multiple
environments solely through our enrollment process, which
is efficient.

Traditional approaches to such normalization in speaker
verification have involved the supervised use of data from

each of the observable environments to characterize them
for later use in enrollment and/or testing. Rather than
taking an approach which requires supervised training, and
hence a prior knowledge of the environments that might be
seen, we investigate an unsupervised scheme in which adap-
tation to data from new environments would be possible
by incorporating it into our verification scheme whenever
it is seen. The problem we consider is an instance of an
abstract problem, namely that of pattern matching under
mismatched conditions: how can we either identify a person
or accept two patterns as being similar when the compar-
isons are or may be done under mismatched conditions (e.g.
different lighting conditions or shadows for face recognition,
different background scenes for object or shape recognition,
different noise conditions for image recognition, different
foreground and lighting noise for background texture recog-
nition, and different reception channels for speaker recog-
nition. As such, we see the technique itself as being useful
for a number of different applications. We start with a de-
scription of the technique in the following section.

2. SOURCE VERIFICATION IN MISMATCHED
ENVIRONMENTS

As a specific instance of the abstract problem, assume N
sources each of who’s output is received over any of M chan-
nels at any given time. For example, consider that each
source is a male or female speaker and that M different
types of microphones (or telephones) are the channels over
which we receive their speech, also referred to here as data.
Given a reception (test data) at some point in time (e.g.
data from a current phone call), along with a source iden-
tity claim (e.g. the speaker’s name), the task is to verify
that the received data was produced by the source with the
claimed identity. Since any source can be received over mul-
tiple channels (environments), any modifications that they
cause in the source data must be accounted for, a procedure
called environment normalization. In general the number of
sources N and the number of channels M will vary as time
progresses. The sources (speakers) that the system is ca-
pable of verifying comprise the enrolled target population,
which is a subset of the N sources.



3. SUPERVISED ENVIRONMENT NORMALIZATION

Current approaches to channel (environment) normaliza-
tion involve, in one form or another, a supervised training
phase to separate and group the training and/or testing
data (previous receptions from all sources) according to a
predetermined set of “models” corresponding to each of the
M channels. Channel dependent background models and
statistics are then derived from these groups. A number of
techniques exist to compare received data to the claimed
source model in light of the various background models.
Another approach involves trying to make the data received
over any of the M channels look as if it was received over
some canonical channel, thus mitigating the influence of the
channel. Here again, the channels must be known so that
they can be inverted. The important point is that these
are techniques which require supervised training and are,
in some application situations, unrealistic because of the
requirement that each channel that MAY be used must be
modeled and thus known ahead of time. We propose the
following unsupervised approach.

4. UNSUPERVISED ENVIRONMENT
NORMALIZATION

Assume that the target population, a subset of the N sources,
has T elements. Our training data, used for enrolling the
targets, consists of data from each of these target sources
received over one of the M channels. Also, we use the data
received over any of the M channels from the N-T non-
target sources, as well as the targets, to model our back-
ground populations. However, rather than trying to identify
the channel over which any of the sources were received, we
use the following unsupervised technique in which the goal
is to use data which we see only during enrollment to gen-
erate background models on the fly. In this approach any
enrolled speaker can be verified, because there is no held
out background population during training.

First we construct a model for each source based on
its data. For generality, we let the model structure and
subsequent distance measures be abstract, as this does not
influence the method of selecting a background data set.
Consider a partition of the original set of N sources, each
of which is received over one of the M channels. At this
point either a top down or a bottom up approach can be
taken. The goal is to end up with an hierarchical clustering
of the sources (speakers). This structure can be represented
as a tree with the following property: the similarity of the
leaves is proportional to the number of common ancestor
nodes. In the top down method, the initial partition is
one set consisting of all of the sources. Then we construct
a sequence of refinements with the final one consisting of
each of the singleton sources in its own subset. (refine-
ment: partition P2 is a refinement of P1 if every element
of P2 is an element of a partition of an element of P1) To
construct a refinement, we need a splitting criterion which
separates the sources. As mentioned before, we let this be
abstract. On the other hand, this last (singleton) partition
is the initial partition for the bottom up approach, where
the sequence of partitions is constructed so that a partition
at any point in the sequence is always a refinement of a

later partition. The last partition is the initial set in the
top down approach. Here, we need a grouping criterion. In
either case the sequence of partitions can be represented as
a tree. Assume that the tree has D levels with the root be-
ing the 0** and the D*" consisting only of leaves. (NOTE:
lower levels may have leaves as well, but they will also have
nodes.) Note that the number of channels is not a parame-
ter here, so that as we get more sources over more channels,
all we need to do is grow or regenerate the tree with these
additional elements.

We define a d-level cohort for any leaf [ as the set of
leaves with a common ancestor d levels up from the bottom
(at level D—d) and containing the leaf I. Thus this notion of
cohort is linked to the hierarchy. As more speakers are en-
rolled and the tree is grown or modified, the character of the
cohorts automatically changes to reflect the modifications.
This is because we do not pre-determine the cohorts. The
benefits of this technique are apparent when we consider
our implementation, described in [1], and note that we can
regenerate or grow our hierarchical structure efficiently, im-
plying efficient adaptation. In our implementation we used
the bottom up approach, with a criterion which sought to
match both channel and source properties. The resulting
cohorts contain data which is similar due to a combination
of source and channel differences. The cohort can be thus
viewed as an evolving background model generator which
itself was generated in an unsupervised manner.

For verification, we choose a level do for the cohorts.
Then given test data from a source with claimed identity
1, verification is based on comparing the test data to the
model for source ¢, which is one of the leaves of the tree,
and the background model, which is derived from the cohort
of the leaf corresponding to source i. If the data matches
the target model better, the identity is verified, otherwise
it is rejected. This comparison can be implemented as a
function that takes as arguments the test data and a model,
and returns a value which is an element of an ordered set.
The value for the target model is compared to the value for
the background model.

5. VERIFICATION DECISION FUNCTION

Denote the set of speakers by
M = {ii;, g pigli=1,.me = {Oij}i=1, ni,

consisting of the mean vector, covariance matrix, and mix-
ture weight for each of the n; components of the i*" Gauss-
ian Mixture Model (GMM). We use n; = 32 Gaussians,
obtained using the LBG algorithm, to model the training
data for each speaker. The base data is 12 dimensional cep-
stra. The only further processing that we do is to normalize
for the mean and include delta and delta-delta parameters
(d is the size of the final vector). It is important to note
the we do not do any form of silence or noise removal, as
one of our goals is to include channel effects in our hierar-
chical model. We next do a bottom up binary clustering
of the data based on a distance measure between models
D(M;, M;) described in [2].

The test data is denoted as O = {f_';}nﬂ,,,,,]v, and we
assume that it is i.1.d. Further, we assume that the covari-
ance matrices {3; ;} are diagonal, and write X; ;(k) for the



variance of the k** dimension. The mixture weights consti-
tute a probability mass function on the mean vectors of
any given model. Let pz(f_';) be the probability of observing
frame f_';L with respect to M;.

Given the observed testing data and an identity claim
1, verification proceeds by comparing

log P(O|M;)
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where, when using a Normal pdf,

2(fn|0i;) =
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to

log P(O|cohort of M; — M;).

However in the experiments, we used

> wilog P(OIMy),

j € cohort - 1

where we chose w; to be uniform. The verification score
used in obtaining the ROC curves presented later is given
by the difference of these two values. The procedure is thus
text-independent.

6. TRAINING AND TESTING DATA

The 8 microphones on which we have collected training and
testing data are:

= SENNHEISER

= AUDIO TECHNICA

= PRO-TA (tie clip)

= TELEX-STICK

LAB TEC - (tie clip)
(UNKNOWN)

LUCENT (monitor mounted)
= RADIO SHACK (hand held)

All training data for a given speaker, i.e. that used during
enrollment to create finest grain models, was collected from
only one of the above 8 microphones. The testing data for
that speaker was collected on the training microphone (the
matched case) as well as on one of the other 8 microphones
(the mismatched case). The imposter trials can be from
any of the 8 microphones.

In the experiments both male and female speakers were
used, however for any given piece of training or testing data,
the gender was unknown. In addition, we tried to get an
even distribution of microphones for training and testing.
To make the experiments realistic, we limited the amount
of training and testing data to approximately 10 seconds.
Specifically, the average amount of training data for each
enrolled model was 11.16 seconds. There were a total of
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Figure 1: Effect of change in cohort character.

microphone | 1 | 2 | 3 | 4 |
% of data | 15.2 | 12.8 | 11.2 [ 12.8 |
microphone | 5 | 6 | 7 | 8 |
% of data | 13.6 | 10.4 | 10.4 [ 13.6 |

Figure 2: Experiment 1: 125 speaker tree

222 speakers enrolled in the final tree that was built. For
the target population, we took a 28 speaker subset of the
full training population (NOTE: any of the 222 could have
been chosen, because we can generate backgrounds for all of
them). The average amount of testing data was 9.6 seconds.
There were 199 matched verification tests, 214 mismatched
tests, and 382 imposter tests. The imposters were taken
from a population that excluded any of the enrolled speak-
ers.

7. RESULTS

We report the results for two experiments. The effect we
wanted to characterize was the change in verification perfor-
mance which resulted from the change in cohort character
when we added more enrollment data to the tree.

Thus the first tree that we built had 125 speakers in it,
and as mentioned previously, the final tree had 222 speak-
ers. The tables in the figures give the percentage of the
enrolled speakers that represent data from each of the mi-
crophones in the experiments.

The solid curve in figure 1 gives the performance for
this case. Then, we added speakers to the tree from the 8
different environments, again trying to keep the balance of
the microphones the same.

The dotted curve in figure 1 gives the performance for
this case. While we knew the microphone composition of
the data that was enrolled in our hierarchical structure, we
did not in any way use this information. The procedure to



microphone | 1 | 2 | 3 | 4 |
% of data | 13.96 | 13.52 | 12.61 | 11.26 |

microphone | 5 | 6 | 7 | 8 |
% of data | 13.96 [ 10.81 [ 12.16 | 11.72 |

Figure 3: Experiment 1: 222 speaker tree

modify the tree was thus unsupervised with respect to the
microphone label. We notice a significant difference in the
performance uniformly over the curves.

8. CONCLUSION

The basic idea that we have presented is to build an hierar-
chical structure purely out of speaker enrollment data and
without specific knowledge of the microphone over which
the data was collected. The main point is that it allows us
to build background models for speaker verification on the
fly whose nature changes as we get more enrollment data.

It is important to note that the sizes of the cohorts are
not changing when we add, or enroll, speakers. But their
character, or more precisely their composition, is changing
to reflect the additional, unlabeled data. The results we
have obtained indicate that we are able to exploit our effi-
cient enrollment procedure to handle verification in multiple
training and testing environments without having to resort
to expensive supervised techniques.

We have also used the same technique on telephony data
(results to appear elsewhere) and have observed the same
behavior. We conclude, taking note that the composition
of the cohort is a critical part of our verification technique,
that we obtain performance gains by increasing the richness
of the cohort, without having to increase its size. Further,
this augmentation can be done in an unsupervised manner
as a natural part of the enrollment procedure.
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