From Pixels to Features III: Frontiers in Handwriting Recognition
S. Impedovo and J.C. Simon (eds.)
© 1992 Elsevier Science Publishers B,V, All rights reserved, 297

Online recognition of unconstrained handprinting: a stroke-
based system and its evaluation

T. Fujisaki, H.S.M. Beigi, C.C. Tappert, M. Ukelson and C.G. Wolf

IBM Watson Research Center, P.O. Box 704, Yorktown Heights, N.Y. 10598

Abstract

A recognize-then-segment recognizer of run-on (relatively unconstrained)
handprinting uses a unified tablet-display to provide a paper-like computer
interface. Whereas most handwriting recognition systems recognize characters,
this one recognizes strokes then finds the best segmentation of strokes into char-
acters. It classifies strokes, generates character hypotheses, and verifies hypoth-
eses to estimate the optimal character sequence for each word. The system is
implemented on an IBM workstation, accepts run-on characters written on a
tablet, and performs recognition in real time. The system is evaluated from se-
veral aspects. A detailed analysis of recognition errors is given.

1. INTRODUCTION

The idea of using handwriting to interface with computers has attracted many
people for many years. With recent advancements in device and packaging
technology, a low-priced tablet-LCD, roughly the size and the weight of a book,
has become a reality. On-line handwriting recognition is one of the key software
technologies required to realize a very intelligent “paper-and-pencil-like” com-
puter interface. An electronic tablet accurately captures x-y coordinate data of
pen-tip movements, “electronic ink” gives the trace of the pen-tip on the screen
surface of a unified LCD display, and recognition algorithms instantly convert
the captured x-y coordinates into coded characters or symbols.

The “Paper-Like-Interface” project at the IBM Thomas J. Watson Research
Center has aimed to realize such a sophisticated and natural application-generic
interface. The current prototype, working on unified LCD-tablet devices and
IBM workstations, supports the use of this interface for such applications as
spread-sheet, host-terminal emulation, and music note editing [9], on AIX, OS/2,
and Penpoint [1].

298 T. Fujisaki et al.

One of the essential features of a recognition system to be used in such an en-
vironment is that the system accurately recognizes relatively unconstrained
handwriting. Figure 1 illustrates the range of types of handwriting for English.
A combination of a “stroke segmentation process”, grouping of strokes into
character units, and a “shape identification process”, shape identification of a
character unit among candidate alphabets, are the two essential steps to perform
recognition task for such writing. In Figure 1, handwriting types are listed in
order of increasing difficulty of stroke segmentation required.

In the case of discrete letters written in boxes, the segmentation is trivial. This
is because strokes are already segmented by writers when each letter is written in
a box. In the case of spaced discrete writing, however, a machine procedure is
required. Projection of X-Y coordinates of strokes onto the X-axis is one of the
most often used techniques for grouping strokes into units corresponding to
characters [5]. These units will then be sent to a character-shape identification
process. Since the segmentation of strokes into character units is done prior to
and independently of the character shape identification process, we call this a
“segmentation-then-recognition strategy”.

In the third type of writing, characters are run together, that is, strokes can
touch or overlap one another. Since characters in run-on handwriting can not
be easily or accurately separated one from another, the two processes of segmen-
tation and shape identification of character units cannot be separated but should
be heavily interrelated. In earlier methods of solving this problem of run-on
characters [6, 7, 10], the process of checking many stroke combinations takes
time and can be a bottleneck in real-time applications.

The approach presented here [3, 4] separates the recognition process into
stroke recognition, stroke grouping (character recognition), and character shape
validation. The improvement is achieved by swapping the order of stroke bun-
dling (character segmentation) and shape recognition of strokes of the earlier ap-
proach. Stroke shape recognition is computation-intensive and proceeds as the
strokes are entered. Compared to the earlier methods, early stroke classification
provides information sufficient to greatly reduce the number of candidates re-
quired to be validated.

This paper briefly summarizes the search strategy of this stroke-based recog-

nition system and then discusses the analysis of recognition errors and human
writing errors in run-on handwriting.

2. SEGMENTATION AND RECOGNITION STRATEGY
2.1 Search Space and Hypothesis Generation

The segmentation of run-on writing is a difficult task. To handle this, the sys-
tem adopted a Generation and Test paradigm which is known to be a very pow-
erful problem solving technique in Artificial Intelligence. Arrival of a stroke from
some external source triggers the generator to generate the most-likely hypothet-
ical solutions. We will simply call this a hypothesis. The tester receives each hy-

Online recognition of unconstrained handprinting 299

Blolxleld| Dl [alclrlelt]e

Sra T e oY e e e
Run-on Diacrete

Connected Wnting

Figure 1. Types of English Handprinting

pothesis and tries to verify it. If it rejects the hypothesis, it will request the next
hypothesis from the generator. This iteration continues until a hypothesis satis-
fies the tester. When a solution is found, the system is ready to accept the next
stroke.

The first component of the system is the stroke-shape recognizer, which starts
processing on receiving a stroke from the tablet. A stroke is matched to stroke
prototypes that correspond to strokes of characters, such as //2 of A (st stroke
of a 2-stroke A4). An input stroke produces a list of stroke labels (each of which
corresponds to a stroke prototype), and corresponding distance scores that indi-
cate the degree of dissimilarity between the input stroke and the prototype. For
example, a vertical-bar stroke could result in a list of labels such as //2 of B, 1/2
of D, 1/14 of E, 1/3 of F, 1/3 of H, and 3/3 of H. A sequence of input strokes
produces a sequence of lists of labels. The system then generates hypothetical
character paths, that is, sequences of stroke labels that are potentially meaningful
sequences of character fragments. For example, a sequence of //2 of A, 2/2 of
A, 1/2 of B, 2/2 of B, and /] of C is a valid hypothetical path corresponding to
ABC.

2.2 Ordering of hypotheses

Since searching for the best solution by the generation-and-test method is a
sequential process, it is essential that the hypotheses be generated and sent to the
tester in order of plausibility.

The standard A* algorithm [8] ensures finding the most plausible hypothesis
from a search space as described above. Associated with each hypothesis & is a
cost function

300 T. Fujisaki et al.

F(h) = G(h) + H(h), (1)

where G(h) is the current score (cost) of the hypothesis from the beginning of the
task until now and H(h) is the future score of the hypothesis which will occur in
the future until the end of the task. Since our score is linear and the system is
synchronized with strokes, equation (1) can be more conveniently reformulated
as:

n j &
Fiy =Yg+ Y (), 2)
=i j=n+1

where g(k) is the score of the stroke at generation k, k(k) is the future score of the
stroke at generation k, n is the number of strokes so far processed, and L is the
total number of strokes in the input.

Since h(k) is a score not yet obtained, it is quite reasonable to approximate
h(k) by a constant bias value B, which is an average score over several writers on
various writings. Because L is unknown in an on-the-fly recognition environment,
the cost function F(n) shown below can be used conveniently for our purpose.
Note that this cost function does not rely on L.

L n L L H
F)=F)~) B= D g()+ » h()~) B=) (s()B) (3)
j=1 j=1 j=n+1 j=1 j=1 .

2.3 Real and approximate scores

In order to make the A* algorithm work effectively, all hypotheses should have
scores that can be compared uniformly regardless of the status of the hypotheses.
Accurate scores from character matching, however, can be obtained only when
all of the constituent strokes of the character are available. Thus, a character
matching score is not available for those hypotheses that correspond to an inter-
mediate state of constructing a character from multiple strokes. In order to
handle this situation, we introduce approximate scores when real scores are not
available.

Real score is a score provided from character matching. Approximate score is
an approximation to the real stroke matching score and is given to every hy-
pothesis. The computation of the approximate score is fast and is complete in the
sense that every hypothesis regardless of its status can be given an approximate
score. Because invocation of the character matcher is expensive, the real score is
computed only for hypotheses which are chosen by the A* algorithm based on
their approximate score.

-The A* search algorithm handles hypotheses with approximate score and real
score as follows:

Online recognition of unconstrained handprinting 301

* When a hypothesis with an approximate score is chosen as the best one, the
score of this hypothesis will be re-computed. In order to do this, the hypoth-
esis will be removed from the search space and will be sent to the constraint
filter which will be described later. The constraint filter replaces the approx-
imate score with the real score. With this new score, the hypothesis will be
again inserted into the search space.

* When the hypothesis with a real score is chosen as the best hypothesis, A*
algorithm uses this hypothesis for expanding the stack. Possibly, a child will
be generated from this hypothesis.

The following condition, approximate score is greater than real score, is neces-
sary and sufficient to keep the A* algorithm optimal with this two-stage scoring
method.

3. HYPOTHESIS TESTING

A module called the constraint filter is used for two purposes. It computes the
(accurate) real score for a given hypothesis and replaces the approximate score
with the real score. It also serves as the test-component in generate-and-test
paradigm. Different independent filters are cascaded to form this constraint fil-
ter. Some filters perform verification while others compute the real score.

When a hypothesis is selected as the best one by the A* search, the hypothesis
is passed through the filters one at a time. If a hypothesis satisfies the constraint,
the hypothesis will be passed to the next filter (verified). But if the hypothesis
conflicts with the constraint, the hypothesis will be eliminated (rejected) from the
search space. A filter for real score computation works similarly to re-compute
the score and replace the score of the hypothesis.

3.1 Character shape verifier

Character shape verifier is one of the filters in the constraint filters. It tests a
hypothesis and computes its real score. When the last stroke of the hypothesis
ends a character, this shape verifier invokes the elastic shape matcher and obtains
the character shape matching score for the last character of the hypothesis. For
instance, if “E” is the label of the last four strokes of a hypothesis, these strokes
are passed to the character shape matcher with the label “E”. The matcher ver-
ifies the topological relationship of the four strokes by comparing to the infor-
mation in the “E” template. The approximate score of the last four strokes will
be replaced with the one obtained from the character shape matching.

A hypothesis will be rejected if the new character score is worse than a
threshold which is a function of the approximate score, or if the new character
score is worse than a constant times the best score ever obtained with the same
strokes.

302 T. Fujisaki et al.

3.2 Language Models

The system uses four different language models in different stages of the re-
cognition process. These models are Predictive Language Model (PLM), Tem-
plate Language Constraint (TLC), Case Transition Model (CTM), and
Dictionary. A brief discussion of each of these language models is given.

3.2.1 Predictive Language Model (PLM)

The Predictive Language Model is based on predictions of a character, given
a context of N previous characters. This model uses a context of N=3 (up to
three characters). This model uses a data base created by extracting the most
frequent tetra-grams (sequences of four characters) from a 270,000-word dic-
tionary. The large number of dictionary words generated a rather robust set of
tetra-grams. The PLM data base includes the probability of occurrence of each
of these tetra-grams.

The PLM is used in the search process to modify the search penalties and to
reorder the search hypotheses. Therefore, the PLM is being used as a control
variable, similar to other control variables like the stroke matching scores. The
introduction of additional control variables necessitates balancing the contrib-
ution from each of the variables in the search. Use of the PLM allows the most
probable hypotheses to be generated first, giving them a higher probability of
pursuance in the search process.

3.2.2 Template Language Constraint (TLC)

The Template Language Constraint works as the search is in progress to re-
strict the generated hypotheses to those allowed by predefined templates. These
templates have several forms: Picture Templates, Character List Templates, and
Word List Templates.

A Picture Template fixes the format of a writing field. For example, if the
writer is asked to enter a date, the recognition is forced to accept only the fol-
lowing format: dd/dd/dd where d stands for a digit. To do this, the TLM will
eliminate any hypothesis in the search that does not fit the specified format.

A Character List Template allows only user-provided characters to be recog-
nized. Therefore, a hypothesis is eliminated if it does not belong to the provided
character list.

A Word List Template allows only user-provided words to be recognized. In
this case, at any point in the search, hypothesized paths that are not present in
any of the listed words are discarded.

3.2.3 Case Transition Model (CTM)

The Case Transition Model is similar to the TLC. For the CTM, the templates
used are those dictated by the grammar of the language. For example, in English,
with the exception of some special cases, there is no word that begins with a
lowercase letter and has some or all of the following letters in uppercase. The
CTM includes a data base of all possible transitions between adjacent characters,

Online recognition of unconstrained handprinting 303

based on the previous context. Any hypothesized path that violates these gram-
matical rules is eliminated.

3.2.4 Dictionary and Case Post-processing

While the previous procedures concerned control variables in the search, this
section describes postprocessing that is performed on the recognized sequence of
characters.

A 100,000-word dictionary, compressed into a data base of about 100 kBytes,
corrects words that are not in the dictionary by picking the dictionary word
closest to the recognized character string. The measure of closeness is based on
several heuristics, such as the percentage of incorrect characters in the recognized
word (relative to the dictionary word) and the length difference between the re-
cognized and dictionary words.

Once a dictionary word is picked to replace the recognized sequence of char-
acters, several case-transition grammatical rules are used to estimate the most
probable case (Upper or Lower) for each letter.

4. EXPERIMENTS

The recognition software system was written in C and evaluated under the
IBM OS/2 and the IBM AIX operating systems. Data for these experiments were
collected using a Photron FIOS-6440 LCD-tablet device, which consists of an
electromagnetic tablet superimposed with a VGA-compatible LCD. Resolution
of the tablet was 50 points/inch and the sampling rate was 70 points/second.

In these experiments, an 82-character alphabet was used: A-Z, a-z, 0-9,
W NGO +-* = > <S%# .

4.1 Evaluation of segmentation

The first experiment was conducted with three subjects familiar with tablet
digitizers. Three different levels of writings, as shown in (A), (B), and (C) of the
figure 2, were collected and tested with different segmentation strategies. These
three cases differ in the degree of character separation. Case (A) is spaced-
discrete writing and the other two are run-on discrete writing. Compared to case
(B), case (C) uses script-shaped characters and has more overlapping of strokes.

Training consisted of printing each character in a writing area which had ver-
tical guide marks separating adjacent characters. Each subject wrote approxi-
mately 240 training characters to generate the stroke templates for recognition.

304 T. Fujisaki et al.

D

THIS WlLL Tvs BT b NC

SCGNENTERL BCHARACT CRS G CAN M @0 4 Gu T 2

Clos C WARND S BST el H 1T WILL ol

THE GOAL OF WORK IN ARTLFLCIAL INTELLIGENCE
IS TO BUILD MACHINES THAT PERFORM TASKS

NORMALLY REQUIRING HUMAN INTELLIGENCE.
THUS, REQUIRING AUTOMATIC METHODS FOR

S'njm‘na' s Me park of ,é’ingu.r‘o,tim that aals

with how He words of a Fanguage, are aﬂmvg.ec{
sentences and Aow CMpmnﬁJ

Ando- phrass and
In X‘ﬂeﬂ‘él-, At

sre combined Ao make words .
would mof- Fe mecelary for &ngmgzé 1 Aave a
%hm_ﬂc ﬂ#ﬂfﬂ!ﬁi-

Figure 2. Handwriting Samples

Character errors in run-on writing can be categorized as one-to-one substi-
tutions. in which one character is substituted for another, and multi-character

Online recognition of unconstrained handprinting 305

substitutions, in which one character is substituted for n characters, n characters
are substituted for one character, or n characters are substituted for m characters.
These multi-character substitution errors will be called segmentation errors since
these errors occur when strokes are incorrectly grouped into characters. In one-
to-one substitution errors, there is nothing wrong with the segmentation, and we
simply call these substitution errors.

In order to measure the capability of segmentation, the three handwriting
samples (A, B, and C) were recognized by three different segmentation methods.
Table 1 lists the segmentation error rates (in percent), that is, the number of seg-
mentation errors over the total number of characters.

In this experiment, method-1 corresponds to the segmentation strategy that
uses x-axis projected gap between strokes [5]. Characters are segmented where
the gap between shadows of two strokes exceeds a predefined writer-independent
threshold.

Method-2 corresponds to the segmentation strategy that uses actual two-
dimensional distances between strokes. The distance between two strokes is de-
fined as the minimum of the distances between constituent points of each stroke.
Characters are segmented when the distance between two strokes exceeds a pre-
defined writer-independent threshold [2].

Method-3 corresponds to the proposed “recognition-then-segmentation” strat-
egy based on generation-and-test. In this method, the segmentation decision in-
volves the analysis of stroke shapes and verification of the character shape.

Method Sample A | Sample B | Sample C
(I) X-projection segmentation 6.2 75.4 87.6
(2) Stroke-distance segmentation 2.9 55.8 77.2
(3) Recognition then segmentation 2 0.0 0.0

Table 1. Error Rates (percent) for Segmentation Strategies

This result shows that the recognition-then-segmentation strategy (method-3)
performs well in various ranges of writing, whereas the other segmentation
methods (method-1 and method-2) do not work for writing without sufficient
separation between characters.

4.2 Evaluation of recognition

Another experiment was conducted with 12 subjects not familiar with tablets
or handwriting recognition systems. At the start of the first session, subjects were
given suggestions for obtaining successful recognition; they were told to try to
make similar characters, such as O and 0, differently, and not to connect adjacent
characters as they would in cursive writing.

306 T. Fujisaki et al.

Each subject wrote approximately 1341 characters to generate the stroke tem-
plate for the recognition. Training consisted of printing each character in a
writing area which had vertical guide marks separating adjacent characters. The
test was done on 1544 characters of run-on writing. For the test, characters were
written on base lines without guide marks. More detail of the test procedure is
given in [11].

Average character-recognition accuracies on twelve writers for run-on writing
are shown in Tables 2 and 3. (These results were obtained during the revision
of the paper by re-running the data through an improved version of the system.)
Table 2 shows the percentage of correctly recognized characters for the alphabet
consisting of all 82 characters and for the restricted alphabets of uppercase only
and digit only (both input and recognized output character is restricted). Table
3 shows the percentage of correctly recognized characters of different types in the
full 82-character alphabet (input restricted, recognized output unrestricted). It
should be noted that these numbers do reflect character segmentation errors but
not word segmentation errors. For example, if the phrase “We went out” was
recognized as “We wen to ut,” all characters would be scored as correct.

82-character

Uppercase

Digits

90.7

96.3

97.2

Table 2. Restricted-alphabet Recognition (percent correct)

Uppercase

Lowercase

Digits

Special

97.2

89.0

89.6

82.1

Table 3. Full alphabet: accuracy within subset (percent correct)

The following observations were made from this character recognition evalu-
ation.

I. Recognition accuracy tends to be a function of alphabet size. Here, recogni-
tion accuracy of the restricted alphabets (digits and uppercase) is clearly bet-
ter than that of the full 82-character alphabet (Table 2).

2. Templates generated from writing made between guide marks can effectively
be used for recognition of run-on handwriting written without guide marks.

3. Special characters are the most difficult to recognize (Table 3). Highly
confusable were: two single quotes and a double quote, comma and single
quote, semicolon and single quote followed by comma, + and t, + and f, +

Online recognition of unconstrained handprinting 307

and X, colon and exclamation point, * and x, * and '=t, 1 and /, | and fy <
and L, § and S.

Lower case letters appear to be difficult to recognize because they have more
variations than upper case letters. Also, it was observed that some writers
have difficulty writing lower-case characters discretely, especially in run-on
writing.

For word segmentation, the system uses a simple segmentation algorithm pre-

viously called method-1. It uses shadows of consecutive strokes projected on to
the x-axis. Words are segmented when the gap between two shadows is greater
than a predefined writer-independent threshold. Because of this simple segmen-
tation strategy, accuracy of word segmentation was only 88.3%.

In order to understand the reason for recognition errors in detail, approxi-

mately one eighth of 2,200 recognition errors were chosen randomly and analyzed
by hand. In order to obtain objective categorization, each error was inspected by
two individuals in parallel. All different assignments of error categories were re-
solved in face-to-face meetings. Seven categories of error causes were introduced.

Tablet problem - misrecognitions caused by tablet or pen malfunctions:
penskip, excessive stroke hooks, extra points, and stroke tapping.

Writer’s error - misrecognitions caused by the writer; for example, the writer
left the writing area blank or wrote symbols other than those requested.

Run-on writing habits - misrecognitions caused by writing habits which this
system could not handle. "Connected strokes” (adjacent characters are con-
nected) and “excessive delayed strokes” (strokes written later to complete "t”,
"i”. etc.) are the causes of misrecognition in this category. Connected strokes
were observed more frequently (60%) than excessive delayed strokes.

New variation of shape - misrecognition due to the introduction of new shape
at recognition time. This only causes errors when the new shape significantly
differs from the ones given during training.

Segmentation - misrecognition due to the invalid grouping of strokes into
characters, causing multi-character substitution errors.

Case confusion - one-to-one character confusion errors between uppercase
and lowercase characters such as “s” and “S”; “x” and “X”; and "¢” and "C”.

Shape confusion - one-to-one character confusion errors from other than the
above causes; for example, “2” and “Z”, “t” and "+ ", "V” and "U".

308 T. Fujisaki et al.

ERROR TYPE PERCENT
Tablet problem 2.6
Writer’s error 39
Run-on writing habits _ 6.4
New variations of shape 16.2
Segmentation 16.6
Case confusion 21.1
Shape confusion 33.2
TOTAL 100.0

Table 4. Types of Run-on Errors

Shape confusion was further classified into two subcategories: confusable even
for human testers, 11.4%, and human can discriminate correctly but machine
could not, 21.8%.

Confusions among O, 0, and o accounted for 8% of the total error; among 5,
S, 5, and 3 (dollar) for 6%; and among double quote, single quote, comma, period,
and i for 5% of the total error. Confusion is also high within the characters ¢,
T, + and /, [, 1, /. Eliminating confusions among the ten confusable characters
(0,¢t,1, S, O, double quote, I, 5, p, quote) would remove 32% of total recognition
errors.

Use of linguistic constraints is essential to reduce errors for some categories.
Approximately two third of case confusion errors were removed by using the
character type transition model described previously. A 4.6% accuracy improve-
ment was obtained over the number in Table 4 by using character tri-gram lin-
guistic constraint, as described previously.

Our run-on recognition system assumes that users spend a certain amount of
time for enrollment (training). It is assumed that all variations of writing charac-
ters can be captured during this enrollment. Errors in category of new variations
of shape, however, indicated that new variations of writing characters can occur
during recognition time.

The following is a breakdown of the error category “new variations of shape”
(16.2%).

1. shape is not new, differs in stroke order - 0.37%

2. shape is not new, differs in stroke direction - 0.87%
3. differs in stroke number, shape may be new. - 5.67%
4. same stroke number, but shape is new - 9.29%

Online recognition of unconstrained handprinting 309

This break-down, together with the shape confusion errors (Table 4), indicates
the necessity of training from run-on writing instead from boxed-discrete writing.
Training in the context of use after a recognition error may also be helpful.

It is also observed from the break-down of new variation errors that stroke
orders and stroke directions of characters are quite stable. Efforts to support
flexible stroke order and direction in characters were not successful.

The category of run-on writing habits reveals that 3.9% of errors can be re-
duced by relaxing the constraint on connected strokes and 2.5% of errors can be
reduced by relaxing the constraint on delayed stroke. We do not support con-
nected strokes. We also have a limit for delayed strokes (e.g. crossing of 1) to
complete a character; strokes cannot back up more than 4 characters for finishing
previously written characters. The initial instructions were not sufficient to
eliminate such habits in run-on writing.

4.3 Effect of training

An adaptive capability is at the heart of the design of the system. This stems
from our belief that the system should adapt to the user rather than force users
to adapt to the system. This adaptive capability yields a system with recognition
accuracy that improves over time. We believe that this capability is key for user
acceptance and satisfaction. Measurement was conducted with the same 12 sub-
jects to observe the accuracy evolution over time. The accuracy of run-on recog-
nition was measured after initial training as well as after training with additional
characters. Figure 3 shows how accuracy improved through training. The X-axis
shows the minimum number of training samples for a character at the time of
measurement. No linguistic constraints are used in this measurement. The figure
indicates that accuracy increased between a minimum of 2 and 3 samples per
character and then levelled off.

310 T. Fujisaki et al.

Accuracy ()

&
|

i 211

S2RBRr83E882Rae

2 3 s 5 8
Minimum number of samples / character

Figure 3. Effect of training

4.4 Effect of Language Models

The Predictive Language Model (PLM) controls the search to increase the
chances of hypotheses most frequent in the language to be expanded. This is
particularly important for writer-independent recognition, where the shape
matching information for the character is not always reliable.
For The speed of writer-independent recognition is also increased by the PLM
because the PLM expands only hypotheses that are allowed by the language and
are of high probability. The PLM increases the accuracy of writer-independent
recognition by about 1.5% and trained recognition by about 0.8% on the test
data used here.

The Template Language Constraint (TLC) and the Case Transition Model
(CTM) also highly reduce the number of hypotheses generated in the search, thus
increasing the accuracy and speed of the system by lowering the rate of confusion.
The effects of the TLC on recognition are similar to those seen in Table 2 by re-
stricting the alphabet. No results are given for general TLC’s since their con-
tribution is highly context dependent and specific to the test conducted.
However, Table 2 could be seen as generated through character list templates.

Online recognition of unconstrained handprinting 311

The dictionary increases both word and character accuracies, and is most
suitable for usage with everyday text creation. The dictionary has been designed
to be robust, so that careful writing can be recognized correctly even for words
not in the dictionary. Word accuracy is typically increased from 5 to 20 percent
and character accuracy from 0.5% to 2.0%.

As a whole, the above language models have been designed to ensure
robustness and to increase the accuracy in all cases. Most require less time for
their private over-head than the time saved in the recognition process by reducing
confusion, etc.

5. DISCUSSION

From the experiments conducted, the recognize-then-segment strategy for the
recognition of run-on handprinting appears promising. This unique strategy
successfully sped up the recognition of run-on writing without degrading recog-
nition accuracy. The improvement is achieved by separating and swapping the
order of stroke bundling (character segmentation) and shape recognition (of
strokes or characters) of the earlier approach. With the information obtained
from the stroke recognition process, the number of hypothesized characters gen-
erated during the segmentation process was significantly reduced. We have also

demonstrated that prototypes obtained from the discrete mode can be effectively
used for runon recognition.

Acknowledgements

We thank Tom Chefalas and Joonki Kim for their work on the design and the
implementation of the system.

6. REFERENCES

1 R. Carr and D. Shafer, The Power of PENPOINT, Addison Wesley, 1991.

2 A.S. Fox and C.C. Tappert, “On-line external word segmentation for
handwriting recognition,” Proc. 3rd Int. Symposium on Handwriting and
Computer Appl., July 1987.

3 T. Fujisaki, T.E. Chefalas, J. Kim, and C.C. Tappert, “Online recognizer
for runon handprinted characters,” Proc. IEEE [0th Int. Conf. Pattern
Recognition, June 1990.

4 T. Fujisaki, T.E. Chefalas, J. Kim, C.C. Tappert, and C.G. Wolf, “Online
Run-on Character Recognizer: Design and Performance,” J. of Pattern
Recognition and Artificial Intelligence, vol. 1, May 1991.

5 G.F. Groner, “Real-time recognition of handprinted text,” Proc. FJCC, pp.
591-601, 1966.

6 H. Murase, “Online recognition of free-format Japanese handwritings,”
Proc. 9th Int. Conf. Pattern Recognition, pp. 1143-1147, November 1988.

312

7

10

11

T. Fujisaki et al.

H. Murase, T. Wakahara, and M. Umeda, “Online writing-box free char-
acter string recognition by candidate character lattice method,” Trans. Inst.
Electron. Commun. Eng. Japan J68-D, pp. 765-772, April 1985. (Japanese)
N.J. Nilsson, Problem solving methods in artificial intelligence,,
McGraw-Hill, 1971.

J.R. Rhyne and C.G. Wolf, “Gestural interfaces for information processing
applications,” /BM Research Report RC12179, September 1986.

C.C. Tappert, Recognition system for run-on handwritten characters,
United States Patent, 4,731,857, March 1988.

C.G. Wolf, A.R. Glasser, and T. Fujisaki, “An Evaluation of Recognition
Accuracy for Discrete and Run-on Writing,” Proceedings of the Human
Factors Society 35th Annual Meeting, pp. 359-363, 1991. also IBM Re-
search Report RC16946

