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Abstract

This paper presents two new controllers and uses an extension of the generalized secant method
of solving linear equations. [1] The first controller is adaptive and operates in the time domain. The
second one is a learning-adaptive controller which uses a similar mathematical concept, but it is
formulated to deal with repetitive systems with repetitive disturbances. This controller operates in
the repetition domain. For both controllers, the formulation of the systems into a linear estimation
problem is presented as well as the solution using the secant method. A convergence is also given for
both controllers. In addition, some practical modifications are presented to increase the robustness
and stability of the systems. Furthermore, an analog network is proposed for increasing the speed
of the controllers which is especially useful for the learning-adaptive controller since this network
parallelizes most of the computation necessary for establishing the control, in hardware form. The
adaptive controller is tested in simulations of two highly non-linear dynamic systems (a non-linear
mass-spring-dashpot and a damped pendulum) against the performance of a self-tuning regulator
and shows considerable superiority both in terms of speed of convergence and accuracy over the self-
tuning regulator. The learning-adaptive controller also shows a great performance for controlling
repetitive dynamic systems when applied to the same two non-linear systems, operating repetitively.
Non-linearities of these dynamic systems have been amplified by requiring them to follow a highly
non-linear and demanding trajectory.

1 Introduction

In general, most dynamic systems are too complex to be modeled properly. In most cases, an
ideal control system would therefore be a system which gives the best performance for the least
user-provided amount of information about the system being controlled. Adaptive control systems
have generally been developed for such applications. Two well known adaptive controllers are the
Model-Reference adaptive controllers and the Self tuning Regulator. [2] As its first proposal, this
paper presents a solution to the adaptive-control problem by considering a general discrete-time,
linear, time-invariant model given by the following equation,

u(t+1) = CAa(t) + CBu(t) + w(t) (1)

In equation 1 the state z is n-dimensional, the control u is m-dimensional, the output vy is g-
dimensional, and ¢ is the time step. Also, A, B, and w(t) are assumed to be unknown — otherwise
one could determine in advance what control to use to minimize the tracking error. For simplicity,
the dimension (order) of the system is assumed to be known, but generalization to just knowing



an upper bound on the order is easily considered.

Many practical applications of control theory involve systems which are repeatedly asked to
perform the same task. Examples include a large number of manufacturing problems as well as
tracking problems for robots on an assembly line. Standard controller design methods often pro-
duce systems that do an imperfect job of executing a command and when these commands are
repeated, the systems repeat the same errors every time. It is perhaps a bit primitive to persist in
repeating the same errors. In the last few years a theory of learning control has been developed in
the literature, generating controllers that can learn from their previous experience at performing a
specific task, see [3, 4, 5, 6].

When control systems are given a task to perform repeatedly, they will usually repeat the same
errors in executing the command, except for some random noise effects. Learning controllers on
the other hand can improve their performance at a given task with each repetition of the task.
Learning control algorithms have used many different approaches to the solving this problem, such
as analogues of proportional, derivative and integral control in the repetition domain to eliminate
errors [6, 5] or conversions of the adaptive control approaches to the learning control problem [3].

As its second proposal, this paper presents a new learning-adaptive control method which im-
proves the performance of a dynamic system as the desired task is performed by the system over
and over again. In this approach a time-variant, discrete-time model of the system is devised in the
form of a system of linear algebraic equations relating the change in the state of the system to the
change in the control action from one repetition of the task to the next. This set of linear equations
gives the transition between any two repetitions. This system is then solved using a generalized
secant method for the appropriate control action and parameter estimates that will minimize the
tracking error of the controlled dynamic system, only requiring the availability of the order of the
system, without any prior knowledge of the system parameters. For practical implementation, a
parallel analog network is also presented which will speed up the most computation intensive part
of the algorithm, even though this computation is done offline for each repetition, and it could even
be done in between repetitions.

The next section presents the adaptive controller including its formulation and convergence.
Then, the formulation of the learning-adaptive controller is presented along with its convergence
proof. Later, some practical modifications are presented for the two systems including the par-
allelization of the computation in the learning-adaptive controller. Simulation results of the two
controllers are then given in the following section, followed by a conclusion.

2 The Adaptive Controller

2.1 Problem Formulation

Let us assume that the elements in u(t) in equation 1 could be arranged in such a way that all
the elements which are dependent on time t are placed at the bottom portion of the vector u(t)
and all the elements which signify the effects of the previous 0 < 7 < t inputs are placed on the



top portion of the u(t) vector. Namely,
T

u(t) = [w"(t— 1) | () (2)

lzm, lzmo

Therefore, equation 1 may be rewritten in the following form,

u(t+1) = Aa(t) + [B|5°] [ e ] +u(t) (3)
H‘/_/

Rewrite equation 3 as follows,

yt+1)=| 4 B| [ zgg ] +w(t) (4)
s H/_/

(1)

Let us assume for now that there is some control action w?(¢) such that when applied to the real
system, S, it would generate an output y;,; equal to the desired value yf+1 and let us call the v
vector containing that control, #;. Therefore,

3/5+1 =5, (5)

Now let us assume that there exists some combination of the system matrix S and the control
input u?(t) such that when placed in the v vector, it provides the same result as in equation 5. Let
us call this pair S; and v;. Therefore,

yf+1 = Sy, (6)

There might not exist such a pair of § and v that would get the output at time ¢ + 1 to be
equal to the desired value. However, given an S;, one could always find some u?(¢) such that when
placed in v, the Frobenius norm of the difference between the actual output and the desired output
at time ¢ 4+ 1 is minimized. This w?(¢) is given by the following equation:

X et e
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wi(t) = B (y (t+1) - [AJB. ] [ul(t_l) D (7)
u®(t) given by equation 7 minimizes the Frobenius norm of the error, ||y*(¢t + 1) — y(¢ + 1)|| .

Through the application of the control given by equation 7, to the actual system, at time ¢,
some output y;,1, will be generated. Let us assume that at time ¢, the best estimate of the system
matrix available to us is S5;. Therefore, the difference between the true system matrix S and S;
could be denoted by AS;. Now let us impose the condition that S;y; would generate the same
output y;41 as would the real system, .5, with the given v;. Therefore,

Yip1 = Se417s (8)



Rewriting equation 8 in terms of S; and the difference between S; and S;;; such that equation 8

holds,
Yegr = (5t + ASy) v, (9)

One way to solve equation 9 is to update the system matrix in one direction each time using
the generalized secant update [1] in the following fashion,

St+1 - St + ASt (10)
where,

AS, = (y(t+1) — Spv) 2f (11)

zFv,

z;’s are secant projection vectors, chosen in the following way:
- Ift > nd+m—1, then, 2z, is chosen orthogonal to the previous n+m—1 vectors, vs_(nym-1), "+, Vi—1-
-Ift <n+4+m—1, then, z; is chosen orthogonal to the available t vectors, vg,- -+, v;_1.

One possibility is to pick z; as a linear combination of vy, - - -, v; which would be orthogonal to
all vg, -+, v;_1. A few orthogonalization methods are available in the literature which may be used
for the actual evaluation of the z vectors. These methods include the well-known Gram-Schmidt
orthogonalization process [7] and a more advanced technique due to Fletcher [8] in which the number
of vectors in the set are likely to be increased or decreased. Therefore, using an orthogonalization
method and equations 7 and 10, in a recursive fashion, a control could be evaluated using equation 7
and after being applied to the real system, based on the response of the system, a better estimate
of the system matrices may be obtained using equation 10.

2.2 Convergence

The set of z’s picked in equation 10 has the property that,

ASw; =0 0<t—j<n+m-1 (12)
therefore,

Si41v; = [Sp41 + ASjp1 + -+ ASi]v; (13)

Si419; = Sj417; 0<t—j<n+m-1 (14)

Now assume that some s < n + m is the maximum number of linearly independent v’s which
could be found and thus v, is a linear combination of all previous s linearly independent vectors.
Then,

Vs = QoVo + -+ 01V, (15)

From equation 15,

s—1
Ss’l)s = ZOC]'SS’U]' (16)
j=0



Also,

Sit1v; = Sj41v; 0< 7 < s—1(from eq. 14) (17)
Siv1v; = Yj41 (from eq's 9 and 10) (18)
Sit1v; = Sv;  (from eq. 4) (19)

Substituting equation 19 into 16,

s—1
SS’US = SZOC]"U]' (20)
j=0
or,
S,v, = Sv, (21)

Using equations 4 and 21 in the absence of noise,

Ys+1 = Ss'vs
= S’Us (22)

Therefore, after s < n + m time instants, the control given by equation 7 provides an output
which will minimize the Frobenius norm of the error at time s+ 1 (i.e., min||y?(s+ 1) —y(s+1)||#)-

3 The Learning-Adaptive Controller

3.1 Problem Formulation

Consider a general discrete-time linear time-variant or time-invariant system,

¥ (t + 1) = A(t)z*(t) + B(t)u*(t) + w*(¢) (23)

y*(t+1) = C*(t+ Db (¢t + 1)
t=0,1,2,...,p—1
k=0,1,2,... (24)

where the state z is n-dimensional, the control u is m-dimensional, the output ¥ is g-dimensional
(¢ > m), t is the time step in a p-step repetitive operation, and k is the repetition number. Also,
A, B, C, and w"(t) are assumed to be unknown — otherwise one could determine in advance what
control to use to minimize the tracking error. For simplicity, the dimension n of the system is
assumed known, but generalization to just knowing an upper bound on n is easily considered.

In the learning control problem (as contrasted with the repetitive control problem in [5]) the
system is assumed to always start from the same initial state in each repetition of the task. Matrix
A includes any state or output feedback control present in the system and the symbol u* is re-
served for the signal added to the control for learning purposes. A time-variant model is considered



because many applications such as in robotics and machining involve nonlinear dynamic systems
which, when linearized, produce linear models with coefficients that vary with the time step and
vary in the same manner each repetition. In such repetitive operations it is often the case that there
will be disturbances w®(t) that repeat with each repetition of the task and the learning can be made
to also correct for this source of errors in a natural way. One of the purposes of a feedback control
is to handle any non-repetitive disturbances, and these will be ignored for purposes of designing
the learning controller.

The solution to 23 can be written as,

t t t
2+ 1) = [ [14@) ) ="+ 3 || II A (BG)'G)+w*(5) (25)
ji=0 j=0 r=j+1
where the product symbol is taken to give the identity matrix if the lower limit is larger than
the upper limit. Let p be the total number of time steps in one repetition of a given task.

Writing equation 25 for successive repetitions k and k+1 and subtract the equation for repetition
k from that of repetition k£ +1. Assuming that disturbances w"® are repetitive with a period of p or a
period of any integral divisor of p, and that the initial conditions are also repetitive from repetition
k to k + 1, we may write the following relation for the outputs of two consecutive repetitions,

yk+1 B yk - p (uk+1 _ uk) (26)
h,k_/
C(1)B(0) 0 0
P C(2)A(1)B(0) 0(2)?(1) | 0 (27)
Clp)Alp-1)---A1)B(O) -~ - C(p)Blp-1)

The system transition matrix P is given by equation 27, and,

vi= ') #7@) - ") ]T (28)

o = [ &70) (1) - (1) ]T (29)

Defining the error e* = y* — y; where y, is the discrete desired trajectory, equation 26 can be
written as,

Pvh =ttt €t (30)

At any repetition k, suppose there exists some change in our input vector, ¥¥, which would lead
to a zero tracking error at the next repetition, k& + 1, namely, e**! = 0. Then, equation 30 for the
given change of input would be as follows,

Pt =0 - € (31)
If P* is an approximation to P at the k®* repetition, then one can write,

Pyt = _ét (32)



where v*

approximation to P (P*) and it would result in an e
will be discussed later.)

is a change in the control vector at repetition k& that would use the information in the
*+1 which is zero (or is minimum F norm as

Let us assume that we are provided with an initial guess for the P matrix at the zeroth repetition,
PO = —¢° (33)

then, v° may be solved for, by using the error vector e provided by the real system using control
vector u®.

Generally, an exact v° may not exist, but a minimum error solution may be obtained for v°
through using the Moore-Penrose pseudo-inverse in the sense that v° would minimize,

| POV +e” |7 (34)
namely,
v0 = —p°le? (35)

If we keep 32 satisfied for all &k, then we may write,

vk = —ptlet for all k (36)
minimizing || P*v* + e* || £.
At any repetition &, the actual system parameters, P, could be written as,

P =P+ DF (37)

where D* is a matrix of corrections for P* at each repetition k. Substituting for P in equation 30
from 37,

(P* + D¥)vF ="t —e* (38)
Solve for D*v* from equation 38,
D*v* = et —ef — PFvE (39)

Since e**! is the error through the introduction of u**! = u* + v*, then the only unknown in
equation 39 is the correction matrix D*.

Since D* is a generally a matrix, one solution to equation 39 would be,

T
Dt _ (ek+1 _ ek _ kak) 2z (40)

T
zF vk

where z* are the secant projection vectors and are chosen such that, [1]

- Ifk > mp—1, then, z* is chosen orthogonal to the previous mp—1 control steps, v
- If k < mp — 1, then, z* is chosen orthogonal to the available k steps, v°,---,vF~1

k—(mp-—1 k-1
(mp=1) ... yk-1,



One possibility is to pick z* as a linear combination of v°,---,v* which would be orthogonal to
all v0, ..., v¥~1 Similar to the case of the adaptive control discussed earlier, any orthogonalization
technique may be used for the actual evaluation of the z vectors.

With the above formulation in mind, a recursive generalized secant learning adaptive control
scheme is given by the following two recursive equations and the use of an orthogonalization method
such as Gram-Schmidt:

vk = —ptlek (41)
L1 . (ek+1 _ ek _ kak) ZkT
Prtt = ph oy T (42)
3.2 Convergence
The set of z* picked in equation 42 has the property that
D=0 0<k-j<mp-1 (43)
therefore,
Prtiyi = [P+l pitl .4 Dty
=Pty 0<k-j<mp-1 (44)

Now assume that some n < mp is the maximum number of linearly independent v’s which could
be found and thus v is a linear combination of all previous n linearly independent control steps.
Then,

n

vt = agvl - F oy v (45)

From equation 45,

PV = nz_:lajP"Vj (46)
j=0
Also,
Pyl = Pitlyi 0 < j <n—1(from eq. 44) (47)
Pyl — et — e (from eq's 38 and 42) (48)
Py = Py (from eq. 30) (49)

Substituting equation 49 into 46,

n—1
PPVt =P ;v (50)
§=0
or,
P*v™ = Pv" (51)

Using equations 30, 38 and 51 in the absence of non-repetitive noise,



e77.+1 _ en — ann

= Pv" (52)
If v* satisfies equation 32, then,

e"tt —e" = —e” (53)

which suggests that €*! must be zero. However, if v only satisfies equation 32 in least F-norm

sense, then €”*! would have a minimum F-norm, namely,
e*tt = Pv" +e” (54)

7+! has minimum F-norm.

where e

If n (the rank of P° — P is equal to mp, then after mp + 1 repetitions of the task, a minimum
F-norm tracking error will be achieved. Of course, n, the rank of P° — P may be less than mp in
which case if the directions in P° containing the correct portions of P are given, then n would be
less than mp by that number of correct guesses. However, if one is not sure of his initial guess for
the P matrix, then mp + 1 is the maximum number of repetitions before convergence.

4 Practical Parallel Implementation

This section provides two different suggestions for using the above two algorithm in a practical
setting. The first suggestion has shown to be necessary for preserving robustness and stability in
both controllers. The second suggestion is a parallel implementation of the pseudo-inverse step
which proves to be the most computation intensive part of the algorithms. It is most useful for the
learning-adaptive controller.

4.1 Degree of Linear Independence

As a practical precaution for stability and quick convergence after evaluating the vector v, using
equation 7 in the adaptive case (or equation 41 in the learning-adaptive case), a linear independence
test was made by evaluating,

T
w, = Lol (55)

lzllello-lle

Here, 7 should be replaced with ¢ for the adaptive controller and with k for the learning-adaptive
controller. If

w,<p 0O0<p<l1 (56)

(In the simulations of this paper, p = 0.0001), then the control for that step is changed such as to
make w, > p. This is done using the information provided by the orthogonalization method. [7]



4.2 Parallel Implementation

The most computation intensive part of the learning-adaptive algorithm is the evaluation of the
pseudo-inverse in equation 41. Although, the nature of this computation is such that it could be
done between two repetitions, it would be nice to be able to solve equation 41 in a more effective and
quicker fashion. By nature, pseudo-inversion is a minimization problem such that the Frobenius
norm of the error ||P*v* + e*||s is minimized. This error, E, could also be formulated in terms of

a minimization problem in v*,

dv* i

U = MEOVERY (57)
VE(VH£)) = P (PPvH(€) + &) (58)
vE(0) = vk (59)

This is a possible minimization formulation of the pseudo-inverse. If the weighting factor M (§)
is set to the identity matrix, the minimization problem reduces to a steepest descent problem.
For convergence of the minimization problem, M should be chosen to be positive definite. Ref-
erence [10] shows a network which recursively goes through the calculations of equations 57- 59.
Figure 1 shows a parallel network which basically solves this minimization problem. However, since
this is a parallel analog network, the calculations are done much more quickly.

A proof of convergence of equations 41 and 42 is given above. This proof of convergence is inde-
pendent of the solution for the change in the control vector. The change in the control input vector
converges if M is picked to be positive definite. This proof could be found in any mathematical
handbook or reference [10] Therefore, the two problems are almost decoupled and if both converge,
the system will converge.

5 Simulations and Results

Adaptive and Learning-Adaptive control algorithms based on the rectangularized version of the
generalized secant method were tested on controlling two nonlinear dynamic systems via computer
simulation. System 1 was a non-linear mass-spring-dashpot with the following differential equation:

ma+c(l+ |a|)a+ (kEla))a=T (60)
System 2 was a damped pendulum with the following differential equation:
ml?a 4 ca+ mglsina =T (61)

where o in equation 60 is a measure of distance which is the linear position of the mass m from
its equilibrium position. In equation 61, a is a measure of the angle the pendulum makes with the
vertical axis (equilibrium point).

In the first system, m = 0.lkgr, ¢ = 0.1N/(m/s) and &k = 0.1N/m. For the Pendulum,
m = 0.1kgr,c=1N/(m/s), and | = 0.1m.

Both systems were given a very demanding non-linear trajectory to follow. This trajectory is
given in figure 2 and it will ensure that both systems operate in a very highly non-linear region.
This is a very good test of the robustness of the algorithms.
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Figure 1: Parallel Network for Solving the Change in control v*
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5.1 The Adaptive Controller

The adaptive control algorithm of equations 7 and 10 was applied to controlling the noted
non-linear systems. The performance of the adaptive-control algorithm is compared to that of the
self-tuning regulator. In both the self-tuning regulator and the secant controller, a proportional-
derivative (PD) controller was used to start up the control process. In the tested dynamic systems
due to being second order, the first two time steps used the PD controller output which was then
switched to the corresponding adaptive controller at time step 3. Both control processes started
with the same initial guesses for the system parameters.

Figure 3 compares the secant controller with the self-tuning regulator when applied to equa-
tion 60. Figure b makes a similar comparison for the pendulum of equation 61. Figures 4 and 6
show comparison of the sum of squares of errors and Euclidean Norm of the Input Vector for the
simulation runs of figures 3 and 5 respectively. Other runs were made using different parameters for
the above systems and the outcomes of the performances were very consistent with those presented
here. As it is apparent from figures 4 and 6, not only was the error reduced by the Secant Adaptive
Controller, but it also used less energy in terms of the magnitude of the input to achieve such
results. For the non-linear mass-spring-dashpot system the amount of enery used by the Secant
Adaptive Controller is one order of magnitude lower than that used by the Self-Tuning Regulator.

25

2
o Proposed Adaptive Controller

+ Self-Tuning Regulator

L
0.01 0.015
Time (s)

Figure 3: Non-linear Mass-Spring-Dashpot Output

5.2 The Learning-Adaptive Controller

Figures 7 shows the results of applying the learning-adaptive algorithm to system 1 without
using rejection techniques of equation 55. It can be seen that convergence did not occur within the
theoretically predicted 10 repetitions. However, by using the rejection technique, this problem is
solved. Figures 8 and 9 show the sum of squares of errors in the first few repetitions of the two
tasks. Through the use of rejections, the system observes the system passively and estimates the
system parameters and as soon as some confidence level given by equation 55 is reached, it reduces
the error practically to zero. The fact that both the simulated systems are highly nonlinear shows
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that this is a very robust learning-adaptive algorithm.

6 Conclusion

6.1 The Adaptive Controller

The secant adaptive-controller converges much more quickly than the self-tuning regulator and
has a consistently lower overall error in the sum of squares sense (up to 65% lower). It is very robust
to have been applied to such non-linear systems at highly non-linear trajectories displaying a very
good performance and does not require any more computation than the self-tuning regulator. With
the practical introduction of the restrictions on w; of equation 55, the secant controller takes a few
steps to learn the parameters of the system before it greatly affects the dynamics of it. Once it
realizes the system parameters, it quickly reduces the error to an amount very close to zero. This
observation was done with many different systems simulated and also in the case of secant learning
controller [7].

6.2 The Learning-Adaptive Controller

Theoretical evidence shows that the Generalized Secant method requires the least number of repeti-
tions for convergence in this framework. [4] shows that through minimizing a quadratic cost function
based on the sum of squares of the errors of the system, the fastest converging minimization tech-
nique will in general need an order of (mp)? repetitions for convergence. The method presented
here will theoretically converge in at most (mp) repetitions in the absence of non-repetitive noise
(as defined earlier).
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Results show that without rejection of non-informative control steps, the system may become
unstable and that the use of a p which is too small in inequality 56, could result in a big reduction
in the rate of convergence. Therefore, there is a trade-off in the magnitude of p. Also, in practice
the magnitude of steps which replace rejected control steps should be made small enough to be
considered a perturbation which does not cause instabilities in the system. In other words, these
perturbations should be small enough that the standard stabilizing controller of the system would
be able to handle. In general, the Generalized Secant Learning-Adaptive Controller has shown to
be very stable and robust in a practical sense when applied to the nonlinear systems of this paper.

The generalized secant learning-adaptive controller was also combined with a parallel scheme
for evaluating the pseudo-inversion required in that learning control algorithm. This makes the
waiting period between two consequent repetitions shorter. The convergence of the two methods
is shown to be almost independent. The results of simulations support the fact that using this
parallel network for obtaining the pseudo-inverse is very practical. However, there is one problem
of practicality which is still outstanding and that is the fact that for each time step there should be
a connection built in the network. However, if networks are developed for this type of a controller,
a maximum size network can work for any number of time steps less than or equal to its maximum
capacity.
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