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Abstract

The research results presented here are extensions of previous work on Iterative Learning Control
(ILC) using projection-based update techniques. These updates were mainly developed for Quasi-
Newton optimization and also for solving systems of simultaneous equations. Recently, such updates
have been used by the authors to estimate the dynamics of a control system which is asked to
perform a periodic task using a discrete formulation. In addition, recently, preliminary extensions
of these updating techniques to continuous systems through formulation in Hilbert Space have been
proposed. This paper provides a formulation of the Iterative Learning Control problem in Hilbert
Space with a convergence proof of the proposed solution based on Broyden’s update.

1 Introduction

Iterative Learning Control (ILC) refers to schemes which take advantage of the extra information
available in controlling systems which are asked to perform a periodic task. Specifically, in Iterative
Learning Control, the initial conditions of the controlled system are reset to the same value after each
period. Early formulations of ILC, tried to re-use ideas developed in the classical control community
such as the Proportional-Derivative Control scheme [1] or the the Integrator [17]. Later, some adaptive-
control ideas started to be used and formulated to fit the case with a periodic trajectory and to take
advantage of the extra information made available by the periodicity. Examples of such systems are
given in [15] which uses the well-known self-tuning regulator idea and [2, 4, 16, 6] which are based on
parameter estimation using updating techniques.

References [4, 6, 16] have presented a formulation of the Learning Control problem using a discrete
linear time-dependent approximation to the system performing multiple periods of a periodic task.
The initial conditions are reset after each period. [2], has presented a learning control scheme for
continuous-time processes using definitions in Hilbert Space. The current paper brings together these
two formulations and derives an Iterative Learning Control scheme for continuous systems using the
Broyden update. A proof of convergence is provided for this case and an application to dynamical
systems is proposed and formulated.

2 Problem Formulation

The following presents the formulation of the general Iterative Learning Control Problem.
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Let a system be described by an operator F' : U — Y, where U and Y are Hilbert spaces with inner
products < -,- >, and < -,- >, respectively. We assume that the system is forced to work periodically,
that is during each cycle we have

Yr = F(uk)7 k= 07 17 e

where uy, € U and yr € Y are a control and an observable output of the system at the k-th cycle,
respectively. Note that the above setting is quite general: the operator F' can represent either a
continuous-time or a discrete-time plant. Let y4 be a desired behavior of the system. Our aim is to
find control ug which is a solution of the operator equation

Ya = F(u). (1)

However, we do not know the operator F' exactly. Since we are dealing with a periodic system, it allows
us to use the information obtained from the previous cycles to improve the performance of the system
at the next cycle as well as to update our knowledge about operator F'. The latter remark prompts us
to use some iterative numerical methods for the solution of the operator equation (1) on-line. In this
paper, we will apply operator updating methods, which are known to be quite efficient in numerical
procedures. The authors’ second work, which deals with updating the operator as well as the control
input, was originally done by the second and third authors in [16] and later with some extensions was
published in [6] and [4]. This work covered a whole array of numerical techniques for performing this
update with a comparison of those techniques. It was, however, applied to a discrete system. Here, we
will extend the results and formulation of [4] and [6] in somewhat the same way as [2] had addressed
the continuous-time problem in which it used a fixed estimate of the system operator.

Note that we form the control input for the next (k + 1)-st cycle as follows:
Uk+1 = Uk — P,;lek, k= 0, 1, ceey (2)

where e = yr — yq is an error at the k-th cycle and P, ~ F'(u) is some approximation of the
linear part of the system near the trajectory induced by control u;. We will also refer to P, ! as the
learning operator. As it was mentioned before, [2] proposed a quasi-Newton ILC method where the
structure of the learning operator once chosen in the beginning is not modified during the learning
procedure. The purpose of the present paper is to analyze learning procedures where newly arrived
information is used to update not only the control input but also the learning operator. [4] shows the
convergence of such algorithms for a discrete-time systems. Here, we prove convergence for the case
of non-linear system operator F' acting on a general Hilbert space. In addition, we propose to use
ILC based on the generalized secant method [4], which takes into account the information from several
preceding iterations. Finally, we would like to note that quasi-Newton ILC methods can be considered
as numerical optimization methods for some auxiliary mathematical programs [12, 13, 5, 16, 6], where
Hessian matrices are updated in a similar fashion.

3 Methods for updating of the System Iterator

In this section we discuss updating procedures for iterative learning control based on projection-type
operator-updating methods. Suppose we apply control ug41 calculated as in (2) to the system and
observe the output yg41. If the system were linear and Py, were chosen as the operator of the system,
then the equation PyAu = yg1 — yr would be satisfied. However, we neither have a linear system nor
we know exactly the linear part of the system. Therefore, we update the approximation of the linear
part Py in such a way that the equation Ppi1Au = yr41 — yg is satisfied. In addition, we require



changes in the approximation operator to be as small as possible. The above consideration leads to the
next convex programming formulation

Py = argmin [|P — Py 3)

subject to
PAu = ypi1 — yi-

or in terms of the error, ey,
PAu = €k+1 — €k-

This optimization problem has a solution for any norm in the following form [10, 5]:

1

Popy =Pp+ ———
w1 =Tkt N A >

(6k+1 — e — PAuk) ® Auy, (4)

The above formula was first obtained by Broyden [7] and we will refer to it as Broyden’s update. It is
a special case of the more general update given by Barnes [3] and used by [4, 16] in application to ILC.

Remark 1 Note that the expression (4) provides a solution in the case of any norm used in (3). In
general the solution can be non-unique. However, the above formula provides an optimal solution with
good properties. This can be easily demonstrated in the finite-dimensional case. Namely, if in the case
of finite dimensions one applies the Frobenious norm, which takes into account the values of all elements
of matriz P, then ({) is a unique solution to the optimization problem (3).

Using the standard technique from the theory of quasi-Newton methods [8, 9, 10, 11, 14], we can prove
the following result.

Theorem 1 Let F : U — 'Y be continuously differentiable in S(ug,r) = {u € U | ||lu—wugq4|| < r}, where
ugq 18 a solution of the operator equation (1) and r > 0. Let g € (0,1) and the following conditions hold.

1) |IF'(wa)l] < 8,

2) ||[F'(u1) — F'(u2)|| < 7llur — uall,
ur,uz € S(ug,r),

3) 5864 < g,

YEq
< ¢,
1—q — 1

Then, if ug € S(ua,eq) and ||Po — F'(uq)|| < &4, the sequence {ur}i, generated by ILC method (2)
with updating procedure (4) is well defined and converges to ug. The convergence is at least linear with
rate q, that is

llurr1 — vall < gllue —uall, k=0,1,.... (5)

PRrROOF: We show by induction on k that (5) holds. We omit the proof for k¥ = 0, since it is identical
to the proof of the induction step. Suppose that (5) is true for k = 0,...,] — 1 and let us demonstrate
that it is also true for k = [.



First, we prove some auxiliary results. The following estimation is true for Broyden’s update if one
uses the Ly-norm [8, 10, 11].

1Ps = F'(ua)l| < ||Pe-1 — F'(ua)l| + %(HW — ual + [|ur-1 — udl)) (6)
By iterating (6), we obtain

1Py = F'(ua)l| < [|Po — F'(ua)l| + %lluO —ug ||

-1
Y
-I-’YZ [Jui — ual| + §||uz —uq ||
=1
1
<P = F'wa)ll +v D llwi —ua | (7

i=0
Then, using the induction hypothesis and Condition 4, we get

l

: €

1P = F'(uq)|| < ||Po— F'(ua)l| + e, Y a* < 6, + 1"_2 < 24, (8)
i=0

that is

1P — F(ug)|] < 26,. 9)

Next we show that the operator Pl_1 is well defined. Namely, using the Banach perturbation theorem
[10, 14], the above inequality (9) and Condition 3, we can write

o [1F" (ua) 1| B B___3B
||Pl I < 1 — [|F'(ug)~Y|||P, — F(ug)]| < 1 — 524, < 1-2/5 T3 10

Now we are able to prove the induction step.

[lug — ug — Pkflle

l|wi —wa — P (F(u) — F(ug))||

1P [F (wa) — F(w)

—P(ua —w)]|l (11)

w41 — uall

IAIN A

The expression in the square brackets of (11) can be rewritten as follows:
F(ug) = F(w) - PB(ug—w)=
1
_ /F’(ul bt — ) (g — w)dt
0
- B(us—w)
1
_ /[F'(u, b t(ug—w)) — F(w)
0

+ F'(w)—PB] (ug—u)dt (12)



Substituting the above expression back into inequality (11), we obtain

1
lwpr —ual| - < ||Pz_1||||/[F'(Ul +t(ua — w)) = F'(w) + F'(w) = P](ua — w)dt]|
0
1
<RI P G+ ta = ) = B )| o =t +
0
1
() = Pl = wi| [ o
0
1
< P it = wn)lea = wllde + 17 () = Pl fug = wl)
0
—1y7
<P I = ]+ 1) = Pl

Condition 2 was used in the above calculations. From auxiliary estimates (9) and (10) it follows that

%(v_&z
3

20 428, — ual

w41 — ual| <

Note that ¢ < % < 4, hence

53
w41 = ual| < =30 lur — udll
Finally, using Condition 3, we obtain
w1 — uall < 5B8|lw — uall < qllur — uall.

This completes the proof.

Remark 2 Moreover, in the finite-dimensional case, one can prove super-linear convergence of the
ILC method with Broyden’s update. The super-linear convergence [10] means that ||ex+1| < ckllexl|
with ¢, — 0 as k — oo. This fact shows that projection-type ILC methods with updating procedures
outperform the method of [2] with the fized structure of the learning operator which possess only linear
convergence.

Note that by using the Sherman-Morrison formula, one can update the inverse operator P, L rather
than P,. Namely, we have

1
Pl =P+ [Aup — P (g1 — yi)] @ Aup Pt (13)
ket k < Aup, P (yrsr — yi) > g i g
or, equivalently,
Pl =p! ! A P'A Au, Pt 14
ki1 =5 T [Aup — P Ayg] @ Au P, (14)

< Auy, P71 Ay >

with Ayk = Yk+1 — Yk-



4 Generalized Secant in Hilbert Space

In this section, the Generalized Secant solution to the ILC problem is formulated in Hilbert space
using the techniques discussed so far. This was first presented for a discrete linear time-dependent
approximation of a learning control system in [16] and later refined in [6] and [4].

The parameter update formula for the generalized secant solution is given by,

Piy1 =P+ (ert+1 — ex — PAug) ® 2y, (15)

< zk, Aup >

where zj are some projection vectors. These vectors are picked to be orthogonal to be able to speed up
the convergence of the system operator and hence the control strategy. It has been shown in [4] that
for the discrete case, the system will converge in only N iterations where N is the rank of the operator
matrix for the discrete case.

Note that the Broyden update given by 4 is a special case of the so called generalized secant method [3,
4]. In the Broyden update, zj is set to be equal to the change in the control action from one period to
the next, namely, Auy.

For the discrete case, [4] shows that in order to have quicker convergence, it is beneficial to apply the
change in the control input from one period to the next in small magnitudes, but retain the direction
given by the algorithm. This amounts to a parameter estimation with small perturbations from the
original trajectory. A confidence criterion is also given in [4] for the discrete case which dictates the
readiness for taking larger corrective steps in the control input for the next period.

In future publications, the convergence of the generalized secant method will be analyzed in the context
of general Hilbert spaces and the results compared to those obtained earlier. Also, the confidence
criterion is explored for the continuous case.

5 Application to dynamical systems

In this section we demonstrate an application of the proposed solution to the Iterative Learning Control
problem using Broyden’s update to the learning control of Lagrangian dynamical systems. A Lagrangian
dynamical system is given by the following vector differential equation

A(@)§ +b(g,q) = u, (16)
q(t)|t=0 = q(0), 4(t)|t=0 = 4(0),

where ¢ € R™ is a vector of generalized coordinates and u € R™ is a vector of generalized forces. We
need to tune the system so that it can track repeatedly the trajectory g4(t),t € [0,T]. Denote

ek(t) = qk(t) - (Id(t)7t € [07T]7k = 07 17

Then for the first learning step we can apply the standard procedure (see e.g. [2, 18, 19]):

~

uy (t) = uo(t) — (Aéo(t) + Béo(t) + Ceo(t)), (17)

where Ajj + By + Cy = u is some linear approximation of the system (16). In this case,



Then, applying the inverse updating formula (14), we obtain

up(t) = up(t) — (A& (t) + Béy(t) + Ce(t))
I Aug(r)[Aé: (1) + Béi (1) + Cen (1))dr
[T Auo(1)[AAGo () + BAgo(r) + CAyo(r)]dr
(Auo(t) — [A2jo(t) + BAGo(t) + CAyo(1)]) (18)

Proceeding in a similar way, one can easily define the general recursive procedure.

6 Conclusion

This paper has formulated the general ILC problem using Broyden’s update in continuous-time by
representing the problem in Hilbert space. An application has also been proposed for the use of this
control scheme.

References [4] and [16] have shown that on discrete systems, a Generalized Secant method, in which the
projection dimensions are not necessarily co-incident with the change in the control input, converge in
a finite number of steps. The authors are currently working on extending the Hilbert space formulation
and convergence proof to the Generalized Secant update. Results of this research will be made available
in future publications.
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