REAL-TIME ON-LINE UNCONSTRAINED HANDWRITING RECOGNITION
USING STATISTICAL METHODS

Krishna S. Nathan, Homayoon S. M. Beuwgt, Jayashree Subrahmonia,
Gregory J. Clary and Hirosht Maruyama

Handwriting Recognition Group

IBM Research, T.J. Watson Center, Yorktown Heights, NY 10598

ABSTRACT

We address the problem of automatic recognition of un-
constrained handwritten text. Statistical methods, such as
hidden Markov models (HMMs) have been used success-
fully for speech recognition and they have recently been ap-
plied to the problem of handwriting recognition as well. In
this paper, we will discuss a general recognition system for
large vocabulary, writer independent, unconstrained hand-
written text. “Unconstrained” implies that the user may
write in any style e.g. printed, cursive or in any combina-
tion of styles. This is more representative of typical hand-
written text where one seldom encounters purely printed
or purely cursive forms. Furthermore, a key characteristic
of the system described in this paper is that it performs
recognition in real-time on 486 class PC platforms with-
out the large amounts of memory required for traditional
HMM based systems. We focus mainly on the writer inde-
pendent task. Some initial writer dependent results are also
reported. An error rate of 18.9% is achieved for a writer-
independent 21,000 word vocabulary task in the absence of
any language models.

1. INTRODUCTION

The automatic recognition of unconstrained on-line hand-
written text is addressed. In on-line recognition data are
collected on an electronic tablet that traces the movement
of the pen, thereby preserving temporal information. Sev-
eral approaches to the problem have been reported in the
literature; e.g. [7] use a TDNN for the recognition of dis-
crete characters. More recently, statistical methods, such as
hidden Markov models (HMMs) that have been used suc-
cessfully for speech recognition [1], have been applied to
the problem of automatic handwriting recognition as well
(6, 8, 5, 4]. In [6] continuous parameter HMMs are used
to recognize characters written in isolation. [8] perform
recognition of writer dependent, purely cursive handwrit-
ing using a system developed for speech recognition. This
paper describes a HMM based system that is not restricted
to a particular style, i.e., purely cursive or purely discrete,
of writing. The writing may be any combination of the 2
styles, a situation frequently encountered in practice. Much
effort was spent in designing a system that could run in real
time on small PC platforms with limited memory. Com-
promises were made in order to reduce computational and
memory requirements sometimes at the expense of accu-

racy. Section 2 describes the various components of the
recognizer. The recognition is carried out in two steps. In
the first step a simpler model is used to generate a short list
of potential candidate strings. This is referred to as the fast
match (FM). Subsequently, a computationally more expen-
sive model is used to reorder each word in the short list.
Section 3 discusses writer independent results for different
vocabulary sizes. Some writer dependent results are also
presented. The main purpose of this paper is to report on
the shape matching capability of the model. Consequently,
experiments with language models or grammars are not de-
scribed.

2. SYSTEM DESCRIPTION

Figure 1 is an overall block diagram of the system.

L (Y1)

Pre-Processing

Feature Extraction

i
| 12

Fast Match

Detailed Match
Search

lTranscription

Figure 1: Block Diagram of Recognition System

2.1. Pre-processing and Feature Extraction

The data are collected as a stream of (z,y) points indexed
in time, sampled at rates between 7T0Hz and 100Hz. The
incoming temporally equi-spaced points are normalized to

a standard size and re-sampled spatially [2]. This removes
inconsistencies due to velocity and makes recognition more
robust to the different writing speeds inherent to writer
independent samples. Similarly, the size normalization, al-
though not crucial for writer dependent recognition, was
found to be essential for the writer independent case. A
feature vector consisting of Az, Ay, cosf and sinf is con-
structed at equi-spaced points along the trajectory. @ is
defined as the angle at the sample. Contextual information
is incorporated by splicing several individual feature vectors
into one large feature vector such that it spans a window
of adjacent points. The window centers are typically lo-
cated at local extrema in z and y. Each such feature vector
is then projected onto a lower dimensional space. We will
refer to this vector as a frame. A typical word may be repre-
sented by 30 such frames, each representing a neighborhood
of points along the trajectory.

2.2. Fast Match
In order to limit computation we use a degenerate single
state model to generate a short list of candidate hypothe-

ses [3]. Figure 2 shows the topology for the single state
model. The feature extraction yields a sequence of frames,

p(ft| C.

Character set
(A-Z a—2 0-9 12,7—.)

Figure 2: Single state model for a character

fi, f2, ... corresponding to the handwritten text. A Gauss-
ian mixture model determines the probability that a par-
ticular character c; gives rise to a frame f; viz. p(fi|c;) =
> (felgi)p(gile;). g:i is a Gaussian with diagonal covari-
ance matrix. The distributions g; are obtained during the
training phase by un-supervised clustering of all the frames.
Also during training, the mixture coeflicients p(gi|c;) are
estimated via the EM algorithm. During decoding each
frame is assumed to be independent of all the others and
the probability that a particular character gives rise to a set
of frames is merely the product of the individual p(fi|c;)
that compose that block of frames. Note that this sim-
plified model does not provide duration modeling. In ad-
dition, there is no distinction between the beginning of a
character and the end of the character. A single output
distribution characterizes the entire character. The notion
of sub-models for states or sub-divisions of a character is
introduced in the detailed match discussed further below.

There is no notion of segmentation prior to recognition.
The segmentation arises as a natural consequence of recog-
nition. This is done by means of the search described below.

2.3. Detailed Match

The fast match described above can be shown to be equiv-
alent to a single state HMM,; there is no notion of relative
position of frames within a character. In the detailed match
model this state degeneracy is removed and each character
is modeled by a series of states, each of which has associated
with it an output distribution corresponding to the portion
of the character that it models.

Figure 3 shows the HMM for character :. The HMM

Figure 3: HMM Topology

has L; states labeled s1,s2,...,sz;, where L; is the aver-
age number of frames for character 7. Associated with each
of the L; states, s1,s2,...,5L,, 1s a set of three transitions
labeled t1, tzandts. Transitions ¢; and ¢z result in the emis-
sion of an observation feature vector. The number of states
L;, the state transition probabilities, p(s;,t;) and the out-
put probability distributions p(f: | si,t;) completely specify
the model. The transitions ¢; and ¢z for a given state are
tied, i.e., p(f: | ss,t1) = p(fe | si,t2). Hence the output
distribution is associated with the state alone and can be
written as p(f: | s;). The output probabilities are deter-
mined from a mixture of tied Gaussian distributions, and
can be written as : p(f: | 8i) = Ekp(ft | gx)p(gr | si),
where the summation is over the entire pool of distributions.
Hence, the HMM is completely specified by the state tran-
sition probabilities, p(s:,t;), and the mixture coeflicients,
p(gx | :).

The HMMs are initialized from the fast match models
by replicating the single state model L; times. The HMMs
are trained using characters written in isolation and words
written in an unconstrained manner using either Viterbi
or forward-backward training. In our system, there is no
significant difference in accuracy between the two training
schemes.

In decoding, the probability of a set of frames given a
character ¢ is given by the probability of the most probable
state sequence that could generate that set of frames. The
optimal sequence of characters that make up the word are
determined by a time synchronous beam search.

2.4. Beam Search

The 20,000+ word lexicon is stored in a structure that
merges common prefixes and suffixes. Since the search
is lexicon driven, only those paths corresponding to valid
words in the vocabulary are expanded. Associated with
each frame is a stack containing all possible partial paths
ending at that frame. The stacks are sorted by probability.

Naturally, thresholds are used to prune out low probability
elements. The top element of the final stack corresponds
to the recognized string. The search space is made more
tractable by the introduction of constraints that limit the
number of nodes that are expanded. One such constraint is
a length distribution for each character. These length his-
tograms, specifying the range of the number of frames that
a given character may span, are generated during training.
These distributions are used in the fast match stage since
the single state model does not have the capacity to model
duration or the number of frames. In the context of the
multi-state model the external length distribution is not
used since the length and state transition probabilities of
individual models define duration.

Delayed strokes pose a problem when using left to right
HMMs to model characters. Examples of delayed strokes
are the dots in the characters “i” and “;”, and crosses in
the characters “x” and “t”. These are strokes that are of-
ten temporally separated from the body of the character. In
most cases, these are added after the whole word is written.
The data points for these characters are not necessarily con-
tiguous in time, thus posing a problem when using left to
right models for these characters. Our solution to this prob-
lem is to train the HMM on only the non delayed strokes
for these characters. Delayed strokes are stripped off before
training the HMM. In decoding, the search mechanism first
expands the non delayed strokes based on the frame prob-
abilities and the character models. The delayed strokes are
then incorporated based on their position relative to the
non delayed strokes and their fast match probabilities.

3. EXPERIMENTS AND DISCUSSION

3.1. Data Sets

Since we were primarily interested in the writer indepen-
dent performance of the recognizer, our first task was to
collect data from a sufficiently large pool of writers. Ap-
proximately 100,000 characters of data were collected from
a pool of 100 writers. The training set consisted of words
chosen from a 20,000+ word lexicon and discrete charac-
ters written in isolation. The subjects were asked to write
in their natural style and encouraged to write on a hori-
zontal line. No other instructions or directions pertaining
to writing style were given. The test set was composed of
data collected from a separate set of 25 writers and con-
sisted uniquely of words chosen at random from the same
lexicon. Once again, there were no constraints on how the
test data were to be written. Both native and non-native
writers were included in both test and training sets. The
data were collected on convertible IBM pen notebook com-
puters. As expected, the data fall into three broad cat-
egories: purely discrete, mixed discrete and cursive, and
purely cursive. Some examples are shown in Figure 4. As
can be seen, there is a wide range in the ‘quality’ or human
readability of the data. The alphabet consisted of upper
and lower case characters, numbers and a few punctuation
symbols and special characters.

W
Dofac wibei

O/U\v}ﬂ% sz*rc‘n?/
Koo o D0MEs
%@i'ﬁm PRy A)

Figure 4: Sample taken from the test data

3.2. Training

In order to capture the writing styles across a broad range
of writers we chose to build models not for each character
but for each significant variation of each character. For ex-
ample, a character may differ in the number of pen strokes,
direction of pen movement or in actual shape itself. An au-
tomatic un-supervised procedure is used to identify these
variations which we call lexemes. For this set, approxi-
mately 150 lexemes were generated. Individual baseforms,
single and multiple state, are trained for each lexeme. Since
on average each HMM consists of 6 states, this would result
in 900 distinct states. In order to reduce the parameters in
the system, individual states are shared across and within
baseforms.

3.3. Results

In practice casual users of handwriting recognition systems
are unwilling to invest the time and effort required to train
user specific systems. It is also easy to envisage scenarios
where training is not an option e.g. public kiosks, points
of sale etc. This was our motivation for concentrating on
the writer independent task. Table 1 summarizes results for
various vocabulary sizes. The detailed match results were
obtained by taking the top few hypotheses from the fast
match and presenting them to the multiple state model.
The fast match effectively acts as a pruner. Since the test
words were randomly selected we do not make use of a
grammar to improve recognition performance by reducing
the perplexity. Hence, the perplexity of the large vocabu-
lary task reported is over 21,000. For the small vocabulary
task, we obtain a writer independent error rate of under 9%.
As expected, this increases with the size of the lexicon (or
perplexity). The error rate for the large vocabulary task is
about 19%. We expect this number to decrease significantly
if the recognizer were used in conjunction with statistical

language models suited for the task. Table 2 tabulates the
recognition times for the different tasks. The recognition
times per word range from 0.4 sec. for the small vocabu-
lary task to 0.48 sec. for the large vocabulary task on an
IBM RS/6000 workstation platform. On standard 486 class
PC platforms, we observe recognition times that are 4 to
5 times these figures which are still sufficient for real time
recognition.

Table 1 : Writer Independent word error rates
(No grammar)

Small Medium | Large

Vocab. Vocab. Vocab.

(3K) (12K) (21K)

Fast Match 14.9% 25.1% 27.9%
Detailed Match 9.0% 14.9% 18.9%

Table 2 : Average recognition time in seconds for
one word on a IBM/RS6000

Small Medium | Large
Vocab. Vocab. Vocab.
(3K) (12K) (21K)
Fast Match 0.29 0.33 0.36
Detailed Match 0.40 0.45 0.48

In addition, we ran a small pilot writer dependent exper-
iment. Using the writer independent system as a starting
point we built models based on additional training samples
from that writer. The original writer independent recogni-
tion error rate for this writer was 27% for the 21,000 vocab-
ulary task without a grammar — significantly higher than
the average writer independent rate of 19%. With the new
writer dependent models the error rate decreased to slightly

below 10%.

3.4. Discussion and Future Directions

The writer independent results reported above are very en-
couraging in light of the fact that no grammar is utilized.
Our studies show that a human has an error rate of 7% when
presented with the words from the above test set in the ab-
sence of any context. Applications such as note-taking (the
equivalent of dictation in speech) can take advantage of sta-
tistical grammars that significantly reduce the perplexity of
the task. Previous work has shown that such language mod-
els reduce the error rate by as much as a factor of 4 [8] for a
similar task. As we mentioned earlier, one of the main goals
of this work was to develop a system that could perform in
real time on PC platforms with standard memory config-
urations. Consequently, we have opted for an aggressive
pruning strategy that results in search errors that would
otherwise be avoided. For similar computational reasons
we limited the number of distributions in our models. Al-
though we have tried to reduce the effect of these constraints
on accuracy, it is easy to see that further decreases in error
rate would result if they were relaxed.

We are currently working on several improvements to
the model. Context dependent models have been shown

to significantly improve performance both for speech and
handwriting and is a natural enhancement. It is also possi-
ble to experiment with left and right handed (and perhaps
even gender dependent) models. The size of the data set is
another issue. We do not feel that 100,000 characters are
sufficient data for successful writer independent recognition,
e.g. [8] report writer dependent results trained on approxi-
mately 40,000 characters per writer using HMM techniques
with writer dependent results comparable to ours. This is
an area that we need to address in the future.

4. CONCLUSION

We have developed a HMM based system for the recogni-
tion of writer independent handwriting recognition. The
writing style can be unconstrained, namely any mixture of
printing or cursive styles. The system achieves an error rate
of 19% on a 21,000 word vocabulary task with no grammar
(perplexity of 21,000). When used in conjunction with sta-
tistical language models that reduce the perplexity of the
task, the error rate is expected to decrease significantly.
Equally importantly, the recognition is performed in real
time on standard PC platforms. Further improvements in
recognition performance can be expected as this latter con-
straint is relaxed due to the advent of faster PC’s.

5. REFERENCES

[1] L. R. Bahl, F. Jelinek, and R. L. Mercer. “A Maximum
Likelihood Approach to Continuous Speech Recogni-
tion”. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 5:179-190, March 1983.

[2] Homayoon S.M Beigi, K. Nathan, G. J. Clary, and
J. Subrahmonia. “Size Normalization in OnLine Uncon-
strained Handwriting Recognition”. In ICIP94, pages
169-172, 1994.

[3] E. J. Bellegarda, J. R. Bellegarda, D. Nahamoo, and
Nathan K. S. “A Statistical Approach to Automatic
Handwriting Recognition”. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence. To appear in

November, 1994.

[4] M. Chen and A. Kundu. “A Complement to Variable
Duration Hidden Markov Model in Handwriting Recog-
nition”. In ICIP9/, pages 174-178.

[65] R. J. Nag, K. H. Wong, and F. Fallside. “Script Recog-
nition Usine Hidden Markov Models”. In ICASSP86,
pages 2071-2074, 1986.

[6] K. Nathan, J. R. Bellegarda, D. Nahamoo, and E. J.
Bellegarda. “On-Line Handwriting Recognition Using
Continuous Parameter Hidden Markov Models”. In

ICASSPY3, volume b, pages 121-124, 1993.

[7] M. Schenkel, I. Guyon, and D. Henderson. “On-Line
Cursive Script Recognition Using Time Delay Neural
Networks and Hidden Markov Models”. In ICASSP94,
volume 2, pages 637-640, 1994.

[8] T. Starner, J. Makhoul, R. Schwartz, and G. Chou.
“On-Line Cursive Handwriting Recognition Using
Speech Recognition Methods”. In ICASSP94, volume b5,
pages 125-128, 1994.

