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Abstract

When control systems are given a task to per-
form repeatedly, they will usually repeat the same
errors in executing the command, except for some
random noise effects. Learning controllers on the
other hand can improve their performance at a
given task with each repetition of the task. Learn-
ing control algorithms have used many different
approaches to the solving this problem, such as
analogues of integral control in the repetition do-
main to eliminate errors [1] and conversions of the
adaptive control approaches to the learning con-
trol problem [2]. This paper presents a method
which is a combination of a parallel network for

solving the control and the generalized secant method

of solving a set of linear equations for solving the
parameter estimation problem.

1 Introduction

Many practical applications of control the-
ory involve systems which are repeatedly asked
to perform the same task. Examples include a
large number of manufacturing problems as well
as tracking problems for robots on an assembly
line. Standard controller design methods often
produce systems that do an imperfect job of ex-
ecuting a command and when these commands
are repeated, the systems repeat the same errors
everytime. It is perhaps a bit primitive to persist
in repeating the same errors. In the last few years
a theory of learning control has been developed
in the literature, generating controllers that can
learn from their previous experience at perform-
ing a specific task, see [3].

In this paper, we consider the learning control

problem for discrete systems, a system of linear
algebraic equations relating the change in the state
of the system to the change in the control action
from one repetition to another. Then we utilize
a parallel network to generate the change in the
control input from one repetition of the task to the
next using the best of our knowledge of the system.
After Application of this change in control to the
actual dynamic system, a parameter estimation is

done using an extension to the generalized secant
update. [4]

2 Problem Formulation

Consider a general discrete-time linear time-
variant or time-invariant system,

264 1) = AR)2H(0) + B (1) + wt(t) (1)

v+ 1) =C*t+ Dzt + 1)
t=0,1,2,...,p—1
k=10,1,2,... (2)
where the state z is n-dimensional, the control
u is m-dimensional, the output y is g-dimensional
(¢ > m), t is the time step in a p-step repetitive
operation, and k is the repetition number. Also,
A, B, C, and w*(t) are assumed to be unknown
— otherwise one could determine in advance what
control to use to minimize the tracking error. For
simplicity, the dimension n of the system is as-
sumed known, but generalization to just knowing
an upper bound on 7 is easily considered.



In the learning control problem (as contrasted
with the repetitive control problem in [1]) the sys-
tem is assumed to always start from the same
initial state in each repetition of the task. Ma-
trix A includes any state or output feedback con-
trol present in the system and the symbol u* is
reserved for the signal added to the control for
learning purposes. A time-variant model is consid-
ered because many applications such as in robot-
ics and machining involve nonlinear dynamic sys-
tems which, when linearized, produce linear mod-
els with coefficients that vary with the time step
and vary in the same manner each repetition. In
such repetitive operations it is often the case that
there will be disturbances w*(t) that repeat with
each repetition of the task and the learning can
be made to also correct for this source of errors
in a natural way. One of the purposes of a feed-
back control is to handle any non-repetitive dis-
turbances, and these will be ignored for purposes
of designing the learning controller.

Based on the system equations 1 and 2, refer-
ence [4] gives the transition between two consecu-
tive repetitions as,

g+l gt = p (uk+1 - uk)
—_——

vk

(3)

P is given in the appendix (equation 13) and,
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Defining e* = y* — y,; where y, is the discrete
desired trajectoy, the recursive generalied secant

learning adaptive control and estimation is,

vk = —Pptlek (6)
L1 . (ek+1 _ ek _ kak) z*T

P =P ‘|‘ szVk (7)

where z* are secant projection vectors and are

defined in [4].
The most computation intensive part of this al-
gorithm is the evaluation of the pseudo-inverse in

equation 6. Although, the nature of this compu-
tation is such that it could be done between two
repetitions, it would be nice to be able to solve
equation 6 in a more effective and quicker fash-
ion. By nature, pseudo-inversion is a minimiza-
tion problem such that the Frobenius norm of the
error ||P*v* + e*|| is minimized. This error, E,
could also be formulated in terms of a minimiza-

tion problem in v*,

dv* B
o =
VE(vH(€)) = P*7(PPvH(€) + &)

v(0) = vg

—M(§)VE(VF) (8)
(9)
(10)

This is a possible minimization formulation of
the pseudo-inverse. If the weighting factor M(¢)
is set to the identity matrix, the minimization
problem reduces to a steepest descent problem.
For convergence of the minimization problem, M
should be chosen to be positive definite. Refer-
ence [5] shows a network which recursively goes
through the calculations of equations 8- 10. Fig-
ure 1 (in the appendix), shows a parallel network
which basically solves this minimization problem.
However, since this is a parallel analog network,
the calculations are done much more quickly.

3 Convergence

A proof of convergence of equations 6 and 7
is given in [3, 4]. This proof of convergence is in-
dependent of the solution for the change in the
control vector. The change in the control input
vector converges if M is picked to be positive def-
inite. This proof could be found in any mathe-
matical handbook or reference [5] Therefore, the
two problems are almost decoupled and if both
converge, the system will converge.

4 Simulations and Results

The learning control algorithm based on the
generalized secant method was tested on two non-
linear dynamic systems. System 1 was a non-
linear mass- spring-dashpot system given by equa-
tion 11,

ma+c(l+vy|lal)a+ (kla))a=T (11)



System 2 was a damped pendulum with the
following differential equation:
mi*a 4 ca + mglsina =T (12)

Figure 2 shows the demanding non-linear tra-
jectory which was requested from both systems.
The parameters of equation 11 were, m = 0.1kgr,
¢=0.1N/(m/s), k = 0.1N/m, and v = 0.2. Fig-
ure 3 shows a plot of the sum of squares of errors
as a function of the repetition number for this sys-
tem. Figures 4 is a similar plot for the pendulum
of equation 12 with m = 1lkgr, ¢ = 1N/(m/s),
and ! = 0.1m.

Figure 2: Desired Trajectory

Figure 3: Squares of Errors (System 1)

The performances reflected through these fig-
ures when compared with those in [4] where the
actual pseudo-inversion was done, are almost iden-
tical. This is due to the fact that the network sim-
ulation for solving the pseudo-inverse through the
weighted steepest descent converged very quickly

and to a high precision. This shows that once
the pseudo-inversion is done through the use of
a parallel network, almost no accuracy is sacri-
ficed. The parallel network, however, will reduce
the amount of computation (wait) between two
consequent repetitions of a task.

Figure 4: Squares of Errors (System 2)

5 Conclusion

This paper has combined the generalized secant
learning controller with a parallel scheme for eval-
uating the pseudo-inversion required in that learn-
ing control algorithm. This makes the waiting pe-
riod between two consequent repetitions shorter.
The convergence of the two methods is shown to
be almost independent. The results of simulations
and comparisons to results in [4] with the actual
pseudo-inversion, support the fact that using this
parallel network for obtaining the pseudo-inverse
is very practical. However, there is one problem of
practicality which is still outstanding and that is
the fact that for each time step there should be a
connection built in the network. However, if net-
works are developed for this type of a controller, a
maximum size network can work for any number
of time steps less than or equal to its maximum
capacity.
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