A CHARACTER LEVEL PREDICTIVE LANGUAGE MODEL
AND ITS APPLICATION TO HANDWRITING RECOGNITION

Homayoon S.M. Beigi and T. Fujisaki
T.J. Watson Research Center
International Business Machines
P.O. Box 704
Yorktown Heights, New York 10598

Abstract

One way to increase the accuracy of handwrit-
ing recognizers is to take advantage of the context
of the text being written. It is a well-known fact
that as the best handwriting recognition engines,
we humans use a lot of context in reading hand-
written text and that our recognition accuracy will
dramatically decrease once we are shown individ-
ual handwritten chraracters without any context.
This paper presents a predictive language model
which uses an N-gram for providing it with prob-
ability of characters following a sequence of N — 1
characters. This language is shown to increase
the accuracy of the handwriting recognizer close
to 4%.

1 Introduction

[1] discusses the development of a character pre-
diction method, based on an N-gram (sequence of
N consequent characters in the language). In this
method, N = 4 is shown to be optimal for prac-
tical on-line handwriting recognition. This paper
will discuss the usage of this prediction method in
an on-line handwriting recognizer which will han-
dle Boxed and Run-On writing. [2]

Character prediction could be used in reducing
the number of errors in applications such as hand-
writing recognition. Commonly, in handwriting
recognition, once a character is written, its dig-
itized < z,y > coordinates are fed into a shape
matcher which will match some features with a
set of given prototypes and will return probabili-
ties of each prototype being the intended writing.
This is independent of the history of the text being
written.

The prediction model of [1] has been estab-

lished by generating tetra-grams from a businesss
correspondance corpus of 320,000,000 words which
includes about 270,000 distinct words (excluding
punctuations). This model has been shown to pro-
duce an average fanout of 5. This means that there
are only an average of 5 possible characters which
could follow a contextual sequence of three char-
acters. This reduction of average fanout from 27
(a-z and space) to 5, reduces the confusion for the
shape matcher and in turn will increase the ac-
curacy. Furthuremore, in this implementation, by
reordering the search hypotheses to the favour of
highly probable characters, this language model
decreases the search error.

The set of characters which are supported in
the N-gram character predictor is ¢ — z plus space
denoted here as #. The N-gram data-base was
made case- insensitive. As an example of the out-
put generated by the character predictor, consider
the word these. The probabilities available from
the character predictor of [1] are p(t|#), p(h|#t),

p(e|#th), p(s|the), p(e|lhes), and p(#|ese) could
be provided by such a data-base.

The system this predictive model was imple-
mented on is a stroke-based Boxed and Run-On
on-line recognition system with elastic matching
as its shape matcher.[2] The predictive model works
in conjunction with the search engine. The search
algorithm used is a special case of the A* algo-
rithm. The predictive language model affects the
search by reordering the search hypotheses and
modifying the stroke-matching scores from the elas-
tic matcher.

2 Description

Due to the nature of the elastic-matcher employed
and the heuristics involved, the scoring system is
not perfectly probabilistic. However, the predic-
tive model is a true probabilistic model. One of
the biggest problems is to develop a method for
mixing the scores provided by the recognizer and
those provided by the predictive model. An ar-
ray of runs were made using the recognition en-
gine without the predictive language model, to
collect statistical data about the heuristic scores
and their mapping to probabilities. As a correct
answer came back from the recognizer, the recog-
nition scores for the strokes in that word were
noted. After finishing the recognition over 24 writ-
ers each writing 180 words, the percentages of the
successful words were noted with their correspond-
ing recognition scores. These values were then
integrated (sumed) to give an accumulated value
such that the best possible score would map into a
probability of 1. Figure 1 shows a graph mapping
recogintion scores to probabilities.

Figure 1: Score-Probability Mapping

The information in figure 1 is used in the form
of a look-up table to convert between the recogni-
tion system scores and probabilities. Probabilities
given by the predictive model have been shown
in [1] to be transfered from being probabilities
within the space of alphabets to probabilities in
the whole character set (including numbers and
special characters).

Figure 2 shows the details of the list of hy-
potheses attached to a search node as it is cre-
ated. In the abscence of the predictive language
model, each search generation (corresponding to a
stroke) is provided with a list of stroke hypotheses
with stroke-match scores by the matcher. When
the predictive language model is used, each node,
depending on its language model path could have
a different list of stroke hypotheses. Some strokes
based on the language model path of the node, are
not allowed by the predictive model or they have
language model scores which might not compete
with their stroke-match scores. Therefore, as in
figure 2, there is a list of local stroke hypotheses
associated with every new node which is generated
through search. This list includes in each entry, an
index to its position in the global hypothesis list
for that generation. In addition, it includes a score
which is a mixture of the language model proba-
bility mapped into score and the score given by
the basic recognition engine.

Figure 3 shows a flow-chart of the proposed pre-
dictive language model. Based on this figure, as
a new search node is generated, it is checked for
being a last stroke within a character hypothesis.
Each stroke is identified as in figure 2, by its posi-
tion within a character (starting with 0) and the
total number of strokes in that chracter. In ad-
dition, the stroke has a character prototype I.D.
which is unique. If the search node is not the last
stroke of a hypothesized prototype, no action is
done and the search engine uses the global hy-
pothesis list for continuing the search process.

If the search node is the last stroke of a hy-
pothesized charcater prototype, it is sent to the
predictive language model to be provided with a
list of language model (LM) hypotheses with their
corresponding probabilities of occurance after that
search node. These predictive model probabilities
are weighed against their context length. Namely,
the longer the context at the search node (max-
imum of 3 characters), the more the predictive
model probability is weighed. This provides some
smoothing for the effects of the predictive lan-
guage model.

As the next step, all the stroke hypotheses which
have both a poor match score and a poor language

model score are killed. At this point the language
model probabilities are mapped into scores which
the search operates in, through the mapping in-
formation available in figure 1.

At this point a new score is created through the
mixture of the stroke-match and predictive model
scores. This mixture is a weighted sum of the two
scores. The weighting factor partly governs the
strength of the language model used.

Once these scores are generated, the list of hy-
potheses is sorted based on the newly generated
scores and then the number of strokes in the char-
acter prototypes in ascending order of number of
strokes. This new list of hypotheses is then used
by the search algorithm to generate new children
for that node. Table 1 presents a set of numbers
in the form of a/b where the a stands for the num-
ber of nodes created per generation and b is the
average number of stroke hypotheses attached to
each node. In table 1, these numbers are given for
the case of the basic system and the one contain-
ing the predictive model, in two rows. The first
row reflects the average value for these numbers
over all nodes and all generations and the second
row gives the maximum of these numbers over all
nodes in a generation, averaged over all genera-
tions.

This table shows that the predictive language
model greatly reduces the search depth. Actually,
in the case of Boxed recognition, the time gain
in the reduction of the search space is more than
that lost as overhead of using the predictive lan-
guage model. In the case of Run-on recognition,
the overhead of the predictive model seems to be
equal to the time lost in the search process when
the predictive model is not being used.

3 A Test of the System

The predictive language model was tested on over
12 writers for the Boxed mode and 6 writers for
the Run-on mode.
people who were not familiar with handwriting
recognition and the text included about 20% or
more non-contextual writing and special symbols.
Each writer was asked to write a text of about
1300 characters for the Boxed mode and 180 char-

These writers were external

acters for the Run-On mode. Tests were done
with both writer-dependent (trained) and writer-
independent (walk-up) prototype sets. Table 2

presents the average values of these accuracies.

4 Conclusion

The predictive language model given in this pa-
per has a very big problem to deal with. This
problem is the incompatibility between the scores
given through the language model (probabilities)
and scores given by the basic recognition engine
(Cartesian plus heuristic scores). Another prob-
lem was that the recogniton engine was not orig-
inally designed to handle this type of a language
model.

Despite these problems, the performance of this
predictive model is acceptable. It is, however,
greatly possible that a different recognizer in abs-
cence of these problems would produce much bet-
ter results due to the studies provided by [1].This
language model has also shown an enhancement to
the accuracy of the post-processing error-correction
model in the system by providing it with a better
base accuracy. [3]

References

[1] Homayoon S.M. Beigi, “Character Pre-
diction for On-Line Handwriting Recogni-
tion,” Canadian Conference on Electrical and
Computer Engineering, IEEE: Toronto,
Canada, September 1992.

T. Fujisaki, H.S.M. Beigi, C.C. Tappert, M.
Ukelson and C.G.Wolf, “Online Recognitoin of
Unconstrained Handprinting: A Stroke-based

System and Its Evaluation,” , 5. Impe-
dovo, Editor, ELSEVIER: Italy, 1992.

Homayoon S.M. Beigi, T. Fujisaki, W. Modlin
and K. Wenstrup, “A Post-Processing Error-
Correction Scheme Using a Dictionary for On-
Line Boxed and Run-On Handwriting Recog-
nition,” Submitted to the IEEE Canadian
Conference on Electrical and Computer Engi-
neering, Toronto, Ontario, Canada, Sep. 1992.

Figure 2: Local Search Hypothesis List

Figure 3: Flow-Chart of the Predictive Language Model

Basic System With Prediction
Average 285/34 97/26
Maximum 1001/54 484/50

Table 1: Search Depth Statistics

Accuracy (No Pred.) Accuracy (Pred.)

Boxed Walk Up 75.7% 79.6%
Boxed Trained 90.2% 92.1%
Run-on Walk Up 68.2% 70.1%
Run-on Trained 86.7% 87.9%

Table 2: Predictive Language Model

