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Abstract

This paper presents a solution to the adaptive-
control problem by considering a general discrete-
time linear time-invariant dynamic model to be
controlled. A new adaptive-control scheme is pre-
sented which uses an extension to the general-
ized secant method of solving a set of linear equa-
tions. [1] This new method is shown to signifi-
cantly outperform the self-tuning regulator in the
control of two highly non-linear dynamic systems
(a non-linear mass-spring-dashpot and a damped
pendulum). Non-linearities of both systems have
been amplified by requiring them to follow a highly
non-linear and demanding trajectory.

1 Introduction

In general, most dynamic systems are too
complex to be modeled properly. In most cases,
an ideal control system would therefore be a sys-
tem which gives the best performance for the least
user-provided amount of information about the
system being controlled. Adaptive-control systems
have generally been developed for such applica-
tions. Two well known adaptive controllers are
the Model-Reference adaptive-control and the Self
tuning Regulator. [2] This paper will present a so-
lution to the adaptive-control problem by comnsid-
ering a general discrete-time linear time-invariant
model given by the following equation,
b+ 1) = CAa(t) + CBult) + u(t) (1)
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In equation 1 the state z is n-dimensional, the
control u is m-dimensional, the output 7 is g¢-
dimensional, and ¢ is the time step. Also, A, B,

and w(t) are assumed to be unknown — otherwise
one could determine in advance what control to
use to minimize the tracking error. For simplicity,
the dimension (order) of the system is assumed to
be known, but generalization to just knowing an
upper bound on the order is easily considered.

2 Formulation

Let us assume that the elements in u(t) in
equation 1 could be arranged in such a way that
all the elements which are dependent on time t are
placed at the bottom portion of the vector u(t)
and all the elements which signify the effects of
the previous 0 < 7 < t inputs are placed on the
top portion of the u(t) vector. Namely,

u(t) = [T (¢ - 1) w7 (1)

lzm,

(2)
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Therefore, equation 1 could be rewritten in the
following form,



Let us assume for now that there is some con-
trol u?(¢) such that when applied to the real sys-
tem, 5, it would generate an output y;4; equal to
the desired value yf,; and let us call the v vector
containing that control, ¥;. Therefore,

(3)

Now let us assume that there exists some com-

d _ o~
Yip1 = S5,

bination of the system matrix S and the control
input u?(¢) such that when placed in the v vector,
attain the same result as in equation 5. Let us call
this pair S; and v;. Therefore,

(6)

There might not exist such a pair of § and v
that would get the output at time ¢ 4+ 1 to be
equal to the desired value. However, given an S;,
one could always find some u?(t) such that when
placed in v, the Frobenius norm of the difference
between the actual output and the desired output
at time ¢ + 1 is minimized. This w?(t) is given by
the following equation:

d
Yip1 = St'Ut

w(t) = B
(se+ 1)~ [405.] |

u?(t) given by equation 7 minimizes the Frobe-
nius norm of the error, ||y%(¢ + 1) — y(¢t + 1)||r-
Through the application of the control given by
equation 7, to the actual system, at time ¢, some
output y;41, will be generated. Let us assume that
at time t, the best estimate of the system matrix
available to us is 5;. Therefore, the difference be-
tween the true system matrix S and S; could be
denoted by AS;. Now let us impose the condition
that S;y; would generate the same output y;i;
as would the real system, S, with the given v;.
Therefore,

(8)

Rewriting equation 8 in terms of 5; and the dif-
ference between S; and S;,; such that equation 8

holds,

Y41 = St+1vt

Yegr = (5t + ASy) v, (9)

One way to solve equation 9 is to update the
system matrix in one direction each time using
the generalized secant update [1] in the following
fashion,

St+1 - St + ASt (10)

where,

(y(t+1) = Sew) 2

Z;f Ut

ASt -

(11)

z;’s are secant projection vectors, chosen in the
following way:
-Ift > n+m—1, then, z; is chosen orthogonal to
the previous n+m—1 vectors, UVt (ndm—1)y """ V¢—1.
-Ift<mn+m—1, then, z; s chosen orthogonal
to the available t vectors, vg, -+, Vs_1.

One possibility is to pick z; as a linear combi-
nation of vg, - - -, v; which would be orthogonal to
all vg,---,v;_1. A few orthogonalization methods
are available in the literature which may be used
for the actual evaluation of the z vectors. These
methods include the well-known Gram-Schmidt
orthogonalization process [3] and a more advanced
technique due to Fletcher [4] in which the number
of vectors in the set are likely to be increased or
decreased. Therefore, using an orthogonalization
method and equations 7 and 10, in a recursive
fashion, a control could be evaluated using equa-
tion 7 and after being applied to the real system,
based on the response of the system, a better es-
timate of the system matrices could be obtained
using equation 10.

3 Convergence

The set of z’s picked in equation 10 has the
property that,

ASw; =0 0<t—-j<n+m-1 (12)
therefore,

St41v5 = [Sep1 + ASjpa + -+ ASy]v; (13)

Si41Y; = Sj417; 0<t—j<n+m-1 (14)

Now assume that some s < n + m is the max-
imum number of linearly independent v’s which



could be found and thus v, is a linear combina-

tion of all previous s linearly independent vectors.
Then,

(15)

Vs = QUp + +*++ Q151

From equation 15,

s—1
S,vs, = Zaszvj (16)
j=0

Also,
Sit1v; = Sj41v; 0< 7 <s—1(from eq. 14) (17)
(18)
(19)

Siv1v; = Yj41 (from eq's 9 and 10)

Sit1v; = Sv;  (from eq. 4)

Substituting equation 19 into 16,

s—1
Ssvs = SZaj'vj (20)
j=0
or,
S,v, = Sv, (21)

Using equations 4 and 21 in the absence of
noise,

Ysp1 = S50
= Sv, (22)
Therefore, after s < n + m time instants, the
control given by equation 7 provides an output
which will minimize the Frobenius norm of the
error at time s+1 (i.e., min||y*(s+1)—y(s+1)||r)-

4 Simulations and Results

The control algorithm of equations 7 and 10 was
applied to controlling two very non-linear systems.
System 1 was a non-linear mass-spring-dashpot
with the following differential equation:

ma+c(l+ |o)a+ (kla))a=T (23)

System 2 was a damped pendulum with the
following differential equation:
ml*a + ca + mglsina =T (24)

where o in equation 23 is a measure of distance
which is the linear position of the mass m from
its equilibrium position. In equation 24, «a is a
measure of the angle the pendulum makes with
the vertical axis (equilibrium point).

Both systems were given a very demanding non-
linear trajectory to follow. This trajectory is given
in figure 1 and it will ensure that both systems
operate in a very highly non-linear region. This
is a very good test of the robustness of the algo-
rithm. The performance of the adaptive-control
algorithm of this paper is compared to that of the
self-tuning regulator. In both the self-tuning reg-
ulator and the secant controller, a proportional-
derivative (PD) controller was used to start up
the control process. For the case of the above sys-
tems, since they are second order, the first two
time steps used a PD controller which was then
switched to the corresponding adaptive controller
at time step 3. Both controllers started with the
same initial guesses for the system matrices.

Figure 2 compares the secant controller with
the self-tuning regulator when applied to equa-
tion 23. In this run, m = 0.1kgr, ¢ = 0.1N/(m/s)
and k = 0.1N/m. Figures 3 make a similar com-
parison for the pendulum of equation 24 with m =
lkgr,c = 1N/(m/s),and ! = 0.1m. Table 1 shows
the sum of squares of errors for the three simula-
tion runs of figures 2 and 3. Other runs were made
using different parameters for the above systems
and the outcomes of the performances were very
consistent with those presented here.

As a practical precaution for stability and quick
convergence after evaluating the vector v, using
equation 7, a linear independence test was made
by evaluating,

|ZtT7’t|

(25)

Wy = —————
" lzllellvle

If w; < p,0< p<1(in the simulations of this
paper, p = 0.00001), then the control for that step
is changed such as to make w; > p. This is done



using the information provided by the orthogonal-
ization method. [3]

Fig. Self-Tuning Secant
2 9.9m? 6.9m?
3 5.2Rad? 1.8 Rad?

Table 1: ||[Error(t)||% for Figs. 2 & 3

5 Conclusion

The secant adaptive-controller converges much
more quickly than the self-tuning regulator and
has a consistently lower overall error in the sum
of squares sense (up to 656% lower). It is very ro-
bust to have been applied to such non-linear sys-
tems at highly non-linear trajectories displaying a
very good performance and does not require any
more computation than the self-tuning regulator.
Reference [3] shows that basically, with the prac-
tical introduction of the restrictions on w; of equa-
tion 25, the secant controller takes a few steps
to learn the parameters of the system before it
greatly affects the dynamics of it. Once it real-
izes the system parameters, it quickly reduces the
error to an amount very close to zero. This ob-
servation was done with many different systems
simulated and also in the case of secant learning
controller [3].
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Fig. 1: Desired Trajectory

Fig. 2: Mass-Spring-Dashpot QOutput

Fig. 3: Pendulum Output



